

Description and Use of the
RSET Floating Percentile

Method Spreadsheets

FPMData.xls
December 28, 2008 Revision

FPMDataGroups.xls
December 28, 2008 Revision

FPMAnova.xls
July 29, 2008 Revision

FPMCalc.xls
December 6, 2008 Revision

Including Information about

Macro Codes and Forms

Michael R. Anderson
Oregon Department of Environmental Quality

Regional Sediment Evaluation Team
Freshwater Sediment Workgroup

December 30, 2008

This page intentionally left blank.

i

Table of Contents

1. Introduction ... 3

1.1 Purpose ... 3
1.2 Contents .. 3
1.3 Spreadsheet Security .. 3
1.4 General Notes .. 5

2. Spreadsheet Design and Use ... 6

2.1 FPMData.xls .. 6
2.1.1 Overview ... 6
2.1.2 Worksheets ... 6
2.1.3 Forms ... 7

2.1.3.1 Data Codes ... 7
2.1.3.2 Cell Colors ... 8

2.1.4 Instructions ... 8
2.2 FPMDataGroups.xls .. 15

2.2.1 Overview ... 15
2.2.2 Worksheets ... 15
2.2.3 Instructions ... 15

2.3 FPMAnova.xls .. 17
2.3.1 Overview ... 17
2.3.2 Worksheets ... 17
2.3.3 Instructions ... 18

2.4 FPMCalc.xls ... 23
2.4.1 Overview ... 23
2.4.2 Worksheets ... 23
2.4.3 Forms ... 24

2.4.3.1 Description of Criteria Worksheet ... 24
2.4.3.2 Reliability Measures Definitions .. 24

2.4.4 Instructions ... 25

3. Spreadsheet Macros ... 33

3.1 Introduction .. 33
3.1.1 Document Text Conventions .. 33
3.1.2 Common Naming and Macro Conventions .. 33
3.1.3 Macro Usage .. 35

3.1.3.1 The SetRanges() Macro .. 35
3.1.3.2 The RunProgram() Macro ... 35

3.2 Macro Code for FPMData.xls .. 36
3.2.1 Summary .. 36

3.2.1.1 Macros Activated When Spreadsheet Opens or Closes ... 36
3.2.1.2 Macros Activated from Buttons on Worksheets .. 36
3.2.1.3 Macros that Control the Main Function of the Program .. 37

3.2.2 mod01RunProgram .. 40
3.2.3 mod02CompileRawData .. 49
3.2.4 mod03SummarizeData ... 52
3.2.5 mod04MakeDataTable ... 56
3.2.6 mod05MakeLists .. 60
3.2.7 mod06FormatData ... 66

3.3 Macro Code for FPMDataGroups.xls .. 77
3.3.1 Summary .. 77

3.3.1.1 Macros Activated When Spreadsheet Opens or Closes ... 77
3.3.1.2 Macros Activated from Buttons on Worksheets .. 77

3.3.2 Module1 .. 77

ii

3.4 Macro Code for FPMAnova.xls .. 80
3.4.1 Summary .. 80

3.4.1.1 Macros Activated When Spreadsheet Opens or Closes ... 80
3.4.1.2 Macros Activated from Buttons on Worksheets .. 80
3.4.1.3 Macros that Control the Main Function of the Program .. 81

3.4.2 mod01RunProgram .. 84
3.4.3 mod02Anova .. 93
3.4.4 mod03Sort Data ... 95
3.4.5 mod04Format Pages .. 96

3.5 Macro Code for FPMCalc.xls ... 101
3.5.1 Summary .. 101

3.5.1.1 Macros Activated When Spreadsheet Opens or Closes ... 101
3.5.1.2 Macros Activated from Buttons on Worksheets .. 101
3.5.1.3 Macros that Control the Main Function of the Program .. 102

3.5.2 mod01RunProgram .. 106
3.5.3 mod02CreateDistributions .. 116
3.5.4 mod03SummarizeData ... 117
3.5.5 mod04CalculatePercentiles .. 119
3.5.6 mod05ErrorCalculations ... 120
3.5.7 mod06SelectCriteria ... 122
3.5.8 mod07FloatingPercentilePass1 .. 124
3.5.9 mod08FloatingPercentilePass2 .. 128
3.5.10 mod09CountCopyData ... 132
3.5.11 mod10FormatData.. 139

FPM Spreadsheets: Introduction Page 3

1. Introduction

1.1 Purpose

The purpose of this document is to explain how the Regional Sediment Evaluation Team (RSET) Floating Percentile
Method (FPM) Microsoft Excel® Spreadsheets work so that they may be more easily used by data analysts as well as
revised and updated if changes are required in the future.

The Floating Percentile Method was developed by Dr. Teresa Michelsen of Avocet Consulting and uses paired
sediment toxicity and chemical analytical data to develop sediment quality guidelines. The spreadsheets were
developed by Michael R. Anderson of the Oregon Department of Environmental Quality as one of the tasks of the
RSET Freshwater Sediment Workgroup.

This document was written under the assumption that the people who use it are at least moderately experienced in
Microsoft Excel® and are familiar with the RSET FPM.

1.2 Contents

This document describes the worksheets and forms for the following spreadsheets:

FPMData.xls (Revised December 28, 2008);

FPMDataGroups.xls (Revised December 28, 2008);

FPMAnova.xls (Revised July 29, 2008); and

FPMCalc.xls (Revised December 6, 2008).

It also includes the code for all of the macros used to perform the spreadsheet calculations and provides a brief
explanation of the macros. It is assumed, however, that readers who refer to the macro code will have a basic
understanding of Microsoft‟s Visual Basic Language for Applications. Therefore, detailed explanations are not
provided for all of the code.

Some of the macros used in these documents were originally adapted from examples in Excel for Windows 95 Power
Programming with VBA (IDG Books Worldwide, 1996) by John Walkenbach. Newer versions of this book are
available. Mr. Walkenbach also maintains a helpful website – The Spreadsheet Page – that was referred to on
occasion and which can be found at http://j-walk.com/ss/.

1.3 Spreadsheet Security

All of the FPM spreadsheets contain macros, which are used to perform the necessary calculations, sorting, and other
manipulation of the data. If the security level of your copy of Microsoft Excel® is set too high, the macros will be
disabled by the software. To check the security level of your software, click on the “Tools” menu and select “Options”
from the bottom of that menu.

Click on the “Security” tab at the top of the Options menu and then click on the “Macro Security…” button on the lower
right side of that page. You should then see the “Security” menu shown on the top of the next page.

Select “Medium,” click OK to save the selection and close the “Security” menu, and OK to close the “Options page.”
This will allow you to open the FPM spreadsheets.

http://j-walk.com/ss/

FPM Spreadsheets: Introduction Page 4

When you open any of the spreadsheets you should get the security warning shown below. For the spreadsheet to
function you must select “Enable Macros” to continue. However, if you only need to look at something in the
spreadsheet, it will open and close more quickly if you select “Disable Macros.”

The macros that run the spreadsheets are protected, which means that a password is required before you can view or
edit them. However, all of the FPM spreadsheets are unprotected and the cells in the spreadsheets are unlocked.
This was done to allow users the flexibility they might need to sort and rearrange data in ways other than those
programmed into the spreadsheets. However, this also means that it is very easy to accidentally delete or paste over
formulas that are written in some of the cells. Loss of such formulas will, of course, prevent the spreadsheets from
generating valid results. Therefore, any changes that you make to the spreadsheets other than adding data to the
designated input tables and following the provided instructions must be done with due caution. Always keep a backup
copy of the original spreadsheets.

FPM Spreadsheets: Introduction Page 5

1.4 General Notes

When you open any of the FPM Spreadsheets you will notice that some of the menus at the top of the spreadsheet
are hidden from view. This is done to provide you with the maximum amount of useful space on your screen and
reduce the amount of scrolling that you might have to do. If you want to restore any of the menus, open the “View”
menu and scroll down to “Toolbars.” When the Toolbars menu appears click on “Standard.” Repeat this step and
click on “Formatting.” These are the two toolbars that are typically showing when Excel opens up. If you want to
know if a certain cell has a formula in it you should open the “View” menu and click on “Formula Bar.” When you
select a cell you can then see if it contains a number or a formula. As noted in the previous section, it is very
important that you not accidentally delete or paste over formulas.

If you decide to paste data into any of the spreadsheets it is recommended that you use the “Paste Special” command
instead of the usual “Paste” command. After you have copied the data that you want to paste and have highlighted
the area where you want to paste it, open the “Edit” menu and then click on “Paste Special.” When the Paste Special
dialog box opens, click on the “Values” selection in the top half of the box and then click on OK to close the box and
paste the data. Using this method you will not accidentally reformat any of the cells in the spreadsheet or paste
formulas into the cells instead of numbers.

Each of the spreadsheets has options that affect that way the spreadsheet functions. You will need to indicate how
you want the program to handle these options before you can successfully run the spreadsheet macros. The cells in
which you designate your choices are shown as white cells. Cells that are yellow are filled in by the macros. The
exceptions to this are the large data tables, all of which are white. For example, FPMCalc.xls has the following table
on the [ControlScreen] page. You will need to supply values for Initial False Negative Target, Final False Negative
Target, Target Interval, Number of Increments, and Percent Precision. You also indicate if you want to Pre-Screen
AETs, Omit AET Outliers, and designate how you want to define an outlier. The macros will fill in the Number of
Stations, Number of Hits, etc.

Regarding nomenclature, the words “page” and “worksheet” are used interchangeably as are “spreadsheet” and
“workbook.” Names shown on the tab of a page/worksheet are referred to in [SquareBrackets]. The FPM
spreadsheets were created with the PC Edition of Microsoft Excel® 2003 and may not work properly with other
versions of Excel, including Excel for Macs, or other spreadsheets; however, a 2007 version of the ANOVA
spreadsheet has been created for use with the Office 2007 analytical toolpak.

FPMData.xls Page 6

2. Spreadsheet Design and Use

2.1 FPMData.xls

2.1.1 Overview

FPMData is the first of the three spreadsheets used for implementing the FPM. Its primary purpose is to help you sort
and screen large sets of analytical data from sediment samples to generate a more concise data set that meets
requirements that you specify. This spreadsheet can:

1. Accept up to 65,000 analytical results for up to 250 chemical constituents having up to 100 different data
qualifiers,

2. Sort the raw data into groups by chemical constituent,

3. Summarize the data for the data set as a whole and for each constituent, and

4. Generate a final data set with options to:

5. Screen out data points with specified data qualifiers,

6. Screen out constituents with less than a specified number of data,

7. Delete specified constituents by name, and

8. Create up to 25 new analyte groups and sum the data for any number of individual constituents.

2.1.2 Worksheets

This spreadsheet workbook consists of 7 worksheets (pages):

“InputData” is the page on which you store all of the initial analytical data. You must place the data into the “Initial
Analytical Data” table in the exact order defined by the existing column headings: Survey, Station, Sample, Chemical,
Conc, Units, and Quality. Instructions are provided on the worksheet.

“OmitAnalytes” is the page you can use to generate tables listing all available analytes and all data qualifier codes
found in the initial analytical data. After generating the tables you can select analytes and data qualifier codes to be
omitted from all subsequent lists and calculations by putting a check mark in the box to the right of the name.
Instructions are provided on the worksheet.

“CreateSums” is the page where you can define new groups of analytes from the existing individual analytes. After
you define a group and give it a name, the spreadsheet will sum the relevant individual analytical data into a total
value for that group. You can also save your groups for future use. Instructions are provided on the worksheet.

“AnalyteSummary” contains a table which lists all of the initial analytical data along with data for newly defined
groups. Color codes are used to identify data points or analytes that have been omitted or summed as defined in the
previous two worksheets.

“DataTable” lists the final edited version of the initial data set which omits all relevant data points and analytes
selected on the “OmitAnalytes” page and includes the new groups defined on the “CreateSums” page.

FPMData.xls Page 7

“DataSetSummary” lists facts about the data set such as total number of data points, how many were omitted, how
many were summed, etc. and provides a table showing all of the new groups and the members of those groups as
well as the names of any analytes screened out from the initial data set. There is an option on this page that you can
use to save a set of designated groups and group members for future use in a different FPMData spreadsheet, or
recover and reuse a previously saved set of groups and group members. Instructions for doing this are provided on
the worksheet.

 “Names” is a reference worksheet that lists all of the named cells used in all of the worksheets. It also contains a
table used to store the names of the tool bars that are open when the program begins. The colors used in the
summary data table are listed there for reference. This is normally a hidden page.

This workbook also contains 2 forms (Key to Screened Data Codes and Key to Raw Data Screen Cell Colors) that
provide reference information.

Finally, this workbook includes 6 modules that contain the main macro code for running the entire workbook. The
forms and the macro modules are password-protected; however, none of the worksheets in the workbook are
protected so you must be careful not to paste data into cells that may already contain formulas. If you follow the
instructions on each worksheet page, that should not be a problem.

2.1.3 Forms

2.1.3.1 Data Codes

This form is opened by a button on the “InputData” page. It defines the three codes used in the “Screened Data
Codes” table.

FPMData.xls Page 8

2.1.3.2 Cell Colors

This form is opened by a button on the “AnalyteSummary” page. It explains the various color codes used in the “Full
Data Set Sorted by Analyte” table.

2.1.4 Instructions

Instructions for running this program along with descriptions of images from the FPMData spreadsheet are given
below. Instructions are also provided on the [InputData], [OmitAnalytes], [CreateSums], and [DataSetSummary]
worksheets in the body of the spreadsheet.

As noted in the section on Spreadsheet Security, when you open the spreadsheet you will see a warning that the
spreadsheet contains macros. Be sure to click on the “Enable Macros” button.

Before you place new data into the FPMData spreadsheet, use the “Clear Analytical Data” and “Clear Previous”
buttons on the [InputData] worksheet (shown below) to make sure that all data left over from a previous data set have
been removed. Then place your raw analytical data, including the relevant identifiers, into the “Initial Analytical Data”
table on the [InputData] worksheet. The data must be placed into the columns in the order shown – Survey, Station,
Sample, Chemical, Concentration, Units, and Data Quality. Do not leave any empty rows in the middle of the data set
and do not change the order of the columns. If you are not going to enter new data, but plan to use the data that are
already in this table, click on the “Clear Previous” button to erase any remaining results from a previous use without
deleting the data that are in the “Input Analytical Data” table.

FPMData.xls Page 9

The data storage table on the [InputData] worksheet in the FPMData.xls spreadsheet

Before you use a data set for the first time you must make sure that the entries have no leading or trailing blank
spaces and that there are no duplicate samples. The “Remove Blanks” and “Check for Duplicates” Buttons are
located at the top of the [InputData] worksheet. If duplicates are identified they will be stored in the “Duplicate
Analytical Data” table on this page (shown below). These must be removed and the data set reentered before
beginning. There is also a table that will store codes in designate why certain analytes have been screened out. The
key to these codes can be viewed by clicking on the “Click to View Data Codes” button at the top of the page. You do
not need to enter anything into that area.

The screened codes and duplicate data tables on the [InputData] worksheet in the FPMData.xls spreadsheet

After the analytical data have been entered and checked, open the [OmitAnalytes] page (shown below). The first
thing that you should do on this page is click on the “Generate Data Lists” button to fill the Analyte List and Data
Qualifier List located on this page.

If you would like to screen out certain analytes or analytes with certain data qualifiers from your raw data set, put
check marks in the boxes in the “Omit” columns next to the relevant analyte names or data qualifier codes in one or
both of the lists.

Indicate the lowest number of data points that you consider acceptable for the analytes that you are testing by putting
an integer into the cell next to “Omit Chem w/Data Pts <” . For the analyses carried out by the RSET team, 30 was
used as the minimum number.

FPMData.xls Page 10

The [OmitAnalytes] worksheet in the FPMData.xls spreadsheet

Open the [CreateSums] worksheet (shown below) and click on the “Create Analyte List‟ button at the top of the page.
This will generate a list of analytes similar to the one previously generated on the [OmitAnalytes] worksheet. If you
put check marks on the [OmitAnalytes] worksheet to omit certain analytes, those analyte names will be shown on the
[CreateSums] page in dark gray cells.

The [CreateSums] worksheet in the FPMData.xls spreadsheet

To create a group that consists of the sum of two or more listed analytes, type a name for that group into the first
available line in the “Group Names List.” Note the “Group No.” associated with the line containing your new group

FPMData.xls Page 11

name. Type that number in the “Group No.” column of the “Analyte List” in the cell next to every analyte that is a part
of the new group.

For example, if you wanted to sum all of the DDT-related compounds, you could create a group named DDTs (see
above). After putting that name in the first line of the “Group Names List,” you would put the number 1 in the “Group
No.” column next to each compound you wanted to include in the DDT group. If you also wanted to group the
Aroclors, you could put that name into the second line of group names and type the number 2 next to each compound
you wanted to include in the Aroclors group.

When analytes are made part of a new group, the data for the individual analytes normally will not appear in the final
screened data table. If you decide that you want to keep one or more of these individual analytes in addition to
adding it to a group, put a check mark in the “Retain” column next to an analyte that you wish to retain.

After you have created a set of groups, there are several ways that you can save and reuse them:

1. If you would like to save the groups for continued reuse in the spreadsheet where you created them, put a
check mark in the “Retain Group List” box at the top of the page. This will prevent the group information from
being deleted when you click on the “Clear Previous” button on the [InputData] page.

2. If you would like to save the groups for use in other FPMData spreadsheets, enter a name for the group in the
appropriate cell in the Save Current Group box, then enter the name of the file into which the group data will
be stored. Make sure this file is open in the same folder as your spreadsheet, then click on the Save Group
button.

If you would like to reuse a previously saved set of groups instead of defining new ones, enter the name for the
desired groups in the appropriate cell in the Retrieve Saved Group box, then enter the name of the file in
which the group data is stored. Make sure this file is open in the same folder as your spreadsheet, then click
on the Retrieve Group button.

The default name for the spreadsheet in which group information is stored or recovered is FPMDataGroups.xls. The
file does not have to have this name, but it must be a copy of the original FPMDataGroups.xls, which will be
discussed in the next section.

Click on the “Create Data Table” button to carry out the requested sorting, screening, and grouping. When the
program starts it will check for certain errors or omissions. If one is encountered the program will terminate and a
message box will appear on the screen telling you what is wrong (for example, if the analytes in a group do not all
have the same units). When the calculations are complete a message indicating the successful completion will
appear on the computer screen.

FPMData.xls Page 12

The results will show up on two worksheets, [AnalyteSummary] and [DataTable]. A table at the top of the
[AnalyteSummary] worksheet (shown below) summarizes data about each analyte such as the number of data points,
the maximum concentration, the minimum concentration, etc.

The data point and min/max concentration summaries on the [AnalyteSummary] worksheet in the FPMData.xls spreadsheet

The [AnalyteSummary] worksheet also contains a table of the sample concentrations listed by analyte (shown below),
both the ones from the raw data table and any new groups that you defined. The cells that contain the analyte names
can be any of several colors. The light yellow cells shown at the beginning of the table contain analytes from your raw
data list that were not screened out. Individual cells shown in red identify data having data qualifiers that you chose to
omit. Those data points will not show up in the final screened data table.

The sample name and concentration lists on the [AnalyteSummary] worksheet in the FPMData.xls spreadsheet

As you scroll to the right in this table you will encounter colors other than light yellow (shown below). These colors
denote analytes that you have omitted, new groups that you created, etc. The key to the colors can be found by
clicking on the “Click Here to View Key to Cell Colors” button at the top of the worksheet page or by looking in Section
2.1.3 in this guidance document.

FPMData.xls Page 13

Different cell colors behind the analyte names on the [AnalyteSummary] worksheet represent different categories of analytes

The [DataTable] worksheet (shown below) holds the final data set omitting all screened data and analytes and
including the new groups. This is the data set that will be imported into the FPMAnova.xls spreadsheet.

The [DataTable] worksheet in the FPMData.xls spreadsheet

The [DataSetSummary] worksheet (shown below), contains a table that summarizes the number of analytes and data
points that were screened out or retained for various reasons. It also contains a list of the name and members of
every new group that you defined as well as a list of every analyte that was screened out.

As described previously, instructions are provided on this page for saving or retrieving group information. A special
file, FPMDataGroups.xls, is used for this purpose. FPMDataGroups.xls can hold up to twenty sets of group
information. If you need room for additional groups you can make a copy of this file with a different name. It must be
a copy so that it contains the macros that are in the original file. FPMDataGroups.xls is described in the next section.

FPMData.xls Page 14

The [DataSetSummary] worksheet in the FPMData.xls spreadsheet

FPMDataGroups.xls Page 15

2.2 FPMDataGroups.xls

2.2.1 Overview

FPMDataGroups is an optional spreadsheet that can be used for group information defined in FPMData.xls. This
spreadsheet:

1. Accepts and stores up to twenty sets of group name and analyte list information created in FPMData.xls; and

2. Restores previously saved group name and analyte list information to FPMData.xls.

2.2.2 Worksheets

This spreadsheet contains only one worksheet:

“FPMDataGroups” contains twenty tables for holding group name and analyte list information. It also contains one
table that lists the names given to the groups when they were saved.

2.2.3 Instructions

The worksheet in FPMDataGroups.xls is shown below. Detailed instructions for using this spreadsheet are given on
the [DataSetSummary] page of FPMData.xls. They are also listed in Section 2.1.4 of this guidance document as part
of the instructions for FPMData.xls.

FPMDataGroups.xls Page 16

The main thing to remember when using this spreadsheet is that both FPMData.xls and FPMDataGroups.xls must be
open in the same folder on your computer in order for the save and retrieve procedures to work. The files do not need
to have these exact names as long as they are copies of the original files. Therefore, if you need to save information
for more than 20 groups you can store them in copies of FPMDataGroups.xls that have different names.

If you want to delete some previously saved group information, delete the name of that group from the table of
“Groups Currently Stored in this Worksheet” and then click on the “Refresh Worksheet” button.

FPMAnova.xls Page 17

2.3 FPMAnova.xls

2.3.1 Overview

FPMAnova is the second of three spreadsheets used for implementing the FPM. It compares the hit and no-hit
distributions for each analyte by calculating an analysis of variance and listing results for several different levels of
significance. This spreadsheet:

1. Accepts screened analytical data from FPMData.xls;

2. Requires one or more sets of bioassay hit/no-hit results with the same survey, station, and sample IDs as
the analytical data;

3. Sorts the data by analyte into hit and no-hit distributions;

4. Stores the sorted hit/no-hit data in another worksheet, if desired;

5. Calculates analysis of variance on the hit versus no-hit distributions to determine whether each analyte is
associated with toxicity in the data set; and

6. Allows the user to select analytes based on the ANOVA results and creates a data set for export into
FPMCalc.xls.

Before running this program you must have the AnalysisToolPack and AnalysisToolPack-VBA Add-Ins installed in
your copy of Excel. From the "Tools" menu, select "Add-Ins," then put a check mark next to AnalysisToolPack
and AnalysisToolPack-VBA and click OK. These Add-Ins have different file names in Office 2003 and 2007;
therefore, you must have the correct FPMAnova.xls version for the version of Office that you are using.

2.3.2 Worksheets

This spreadsheet workbook consists of 27 worksheets. The following 6 are used on a regular basis:

“ControlScreen” contains most of the instructions for using the spreadsheet along with buttons for running the
program, loading FPMData, and clearing data from the worksheets.

“ChemData” holds the data from the FPMData spreadsheet in preparation for calculating the analysis of variance
of the hit and no-hit data.

“BioData” holds up to 20 sets of biological hit/no-hit designations that correspond to the analytical data results on
the [ChemData] page. These hit/no-hit designations may be for different tests, endpoints, or levels of effects.

“SortedData” temporarily stores the analytical data sorted into hit and no-hit columns that will be used for the
analysis of variance.

“AnovaResults” stores the results of the analysis of variance calculations for all of the sets of bio data stored on
the [BioData] page.

“FinalDataSet” stores the data that have been selected for use in the FPMCalc spreadsheet.

There are an additional 20 worksheets that are initially hidden but are available for storing data: These
worksheets are named 1, 2, 3, … etc. up to 20, and are used only if, when you are running the program, you
decide to save all of the lists of data that have been sorted into hit and no-hit groups during the ANOVA

FPMAnova.xls Page 18

calculations. This can be done by putting a “Y” in the appropriate cell on the [ControlScreen] page. If the sorted
data sets are saved, a worksheet is unhidden for each data set and is renamed with the name of the data set.

The following worksheet is not used for the calculations and is normally hidden at all times:

“Names” is a reference worksheet that lists all of the named cells used in all of the worksheets. It also contains a
table used to store the names of the tool bars that are open when the program begins.

This workbook includes 4 modules that contain the main macro code for running the entire workbook. The forms
and the macro modules are password-protected; however, none of the worksheets in the workbook are protected
so you must be careful not to paste data into cells that may already contain formulas. If you follow the instructions
on each worksheet page, that should not be a problem.

2.3.3 Instructions

Instructions for running this program along with descriptions of and images from the FPMAnova spreadsheet are
given below. Instructions are also provided on the [ControlScreen] and [AnovaResults] worksheets in the body of
the spreadsheet.

As noted in the section on Spreadsheet Security, when you open the spreadsheet you will see a warning that the
spreadsheet contains macros. Be sure to click on the “Enable Macros” button if you are running the ANOVA
macros. However, if you are just opening the spreadsheet to copy the results into the FPMCalc.xls spreadsheet, it
will open and close more quickly if you select “Disable Macros.”

The [ControlScreen] worksheet (shown below) primarily consists of instructions for running the program and
buttons for clearing data from various worksheets within the spreadsheet. If you plan to work with a new data set
that is not yet in the spreadsheet you should use the “Clear All Workbook Tables” button to make sure that no
data from a previous data set remain. If you are using data that are already in the spreadsheet, use some of the
other “Clear …” buttons to delete any old results that you would like to replace.

FPMAnova.xls Page 19

The [ControlScreen] worksheet in the FPMAnova.xls spreadsheet

The [ChemData] worksheet on the FPMAnova spreadsheet is set up to accept the data from the [DataTable]
worksheet of the FPMData spreadsheet. To do this you must have both of the spreadsheets stored in the same
folder on your computer and both spreadsheets must be open. Then type the complete name of your copy of the
FPMData spreadsheet (for example, FPMData-CH10G.xls) into the white cell near the bottom right corner of the
[ControlScreen] page and click on the “Copy Screened Data” button right below that cell. When the transfer is
complete the data will be located on the [ChemData] page (shown below). You can then close the FPMData
spreadsheet.

The [ChemData] worksheet in the FPMAnova.xls spreadsheet

FPMAnova.xls Page 20

Enter up to 20 corresponding sets of hit/no-hit data into the table on the [BioData] worksheet (shown below). The
sets of Survey, Station, and Sample values for the bio data must be identical to the Survey, Station, and Sample
values of the analytical data so the program can match corresponding sets of data on which to perform an
analysis of variance. You do not have to paste the bio data into the [BioData] table in the same row order as they
are shown in the [ChemData] worksheet. The program will sort the data sets and put them into the correct order.

The [BioData] worksheet in the FPMAnova.xls spreadsheet

Go back to the [ControlScreen] page and click on the “Run Anova” button. When the program starts it will check
for certain errors or omissions. If one is encountered the program will terminate and a message box will appear
on the screen telling you what is wrong. As the program runs, it will sort the analytical data into separate hit and
no-hit columns and place it on the [SortedData] worksheet (shown below) prior to performing the analysis of
variance. If you have more than one set of bio data, the sorted data for the current set will replace the sorted data
for the previous set on the [SortedData] page. If you want to save all of the individual sets of sorted data, put a
“Y” on the “Save Sorted Data?” line on the [ControlScreen] page.

The [SortedData] worksheet in the FPMAnova.xls spreadsheet

If you save the sets of sorted data, new worksheets will appear during the course of the calculations. They can
be identified by the data set name shown on the tabs of the new worksheets (see example below).

FPMAnova.xls Page 21

…

A worksheet in the FPMAnova.xls spreadsheet used to save temporary data from the [SortedData] worksheet.

When the calculations are complete a message indicating the successful completion will appear on the computer
screen and the results will be displayed on the [AnovaResults] page (shown below). At this point you will review
the data from the analysis of variance calculations and decide what set of bio data to use for your final FPM
calculations. When you have selected one bio data set, put a check mark in the box above that column of data
that you have selected. If you decide to eliminate any analytes at this point, uncheck the relevant boxes in the
column to the right of the analyte names. Analytes are generally eliminated if they do not meet the desired level
of significance. Then click on the “Compile Dataset” button at the top of the [AnovaResults] page.

The [AnovaResults] worksheet in the FPMAnova.xls spreadsheet

When the data have been compiled into a table of data that you can use in the FPMCalc spreadsheet, the results
will be placed in the [FinalDataSet] worksheet (shown below).

FPMAnova.xls Page 22

The [AnovaResults] worksheet in the FPMAnova.xls spreadsheet

As noted earlier, if you opted to save the sets of sorted data, extra worksheets will be opened during the run and
each set of sorted data will be placed into a separate worksheet with the name of the data set on the worksheet
tab.

FPMCalc.xls Page 23

2.4 FPMCalc.xls

2.4.1 Overview

FPMCalc is the third of three spreadsheets used for implementing the FPM. This spreadsheet carries out the
actual FPM calculations using the final data set that was screened with FPMData and tested for analysis of
variance with FPMAnova. FPMCalc.xls:

1. Accepts the final table of chem and bio data created in FPMAnova.xls;

2. Sorts the data by analyte into distributions from lowest to highest concentrations;

3. Uses the data distributions to generate data distribution percentiles;

4. Selects an initial FPM dataset based on user-entered targets of %False Negatives;

5. Compares the selected FPM dataset to the chem and bio data and counts the number of false positives
and false negatives;

6. Modifies the dataset in order to maintain the target %False Negatives while minimizing the %False
Positives;

7. Computes a variety of reliability indices to evaluate the reliability of the results; and

8. Allows comparison of alternative SQG sets and their reliabilities to the results of the FPM model.

2.4.2 Worksheets

This spreadsheet workbook consists of 8 worksheets:

“ControlScreen” contains the instructions for using the spreadsheet along with buttons for running the program,
loading FPMAnova results, and clearing data from the worksheets.

“DataTable” holds the biological and analytical data that have been analyzed and assembled in FPMAnova.

“Distributions” lists the analytical data by analyte and displays it in order from lowest to highest concentration.

“Percentiles” lists the percentile concentrations for each analyte based on the previous distributions.

“ErrorCalc” lists the number of True/False Hits/NoHits that would result for each of the previous percentile
concentrations if those concentrations were used as the sediment standards.

“Criteria” contains the initial and final FPM results for the range of %False Negative Targets specified in the table
on the [ControlScreen] page.

“DataStorage” is not used in any of the calculations. It is provided for the user to store and compare results from
different sets of FPM calculations

“Names” is a reference worksheet that lists all of the named cells used in all of the worksheets. It is a hidden
page that is never shown to the regular user.

This workbook also contains 2 forms (Description of Criteria Worksheet and Reliability Measures
Definitions). The forms provide additional information about the [Criteria] page and can be opened by clicking on
the buttons located on that page.

FPMCalc.xls Page 24

Finally, this workbook contains 10 modules that contain the main macro code for running the entire workbook.

2.4.3 Forms

2.4.3.1 Description of Criteria Worksheet

2.4.3.2 Reliability Measures Definitions

FPMCalc.xls Page 25

2.4.4 Instructions

Instructions for running this program along with descriptions of and images from the FPMCalc spreadsheet are
given below. Instructions are also provided on the [ControlScreen] worksheet (shown below) in the body of the
spreadsheet. As noted in the section on Spreadsheet Security, when you open the spreadsheet you will see a
warning that the spreadsheet contains macros. Be sure to click on the “Enable Macros” button if you are running
the model. However, if you just want to look at existing results, it is faster to disable the macros.

The [ControlScreen] worksheet in the FPMCalc.xls spreadsheet

[ControlScreen] contains several buttons such as “Copy Anova Data” and “Clear All Worksheets” that perform
specific tasks to prepare the spreadsheet for analysis as well as the “Calculate Floating Percentiles” button that
initiates the main analytical function of the program. There is also a table where you can change certain variables
that affect how the program operates and a table that summarizes the number and types of data in the most
recently analyzed data set. These will be discussed later.

If you plan to work with a data set that is already in the spreadsheet you should click on the “Clear All Sheets
Except Data & Storage Tables” button to delete the results of the previous analysis. If you want to work with a
new data set you will, of course, have to load the relevant data. To make sure that no data from an earlier data
set remain in any of the tables, you should first click on the “Clear All Worksheets” button.

The [DataTable] page on this spreadsheet (see next page) is set up to accept the data from the [FinalDataSet]
page of the FPMAnova spreadsheet. For this to work properly, you must have both of the spreadsheets stored in
the same folder on your computer, and both spreadsheets must be open. Then type the complete name of your
copy of the FPMAnova spreadsheet (for example, FPMAnova-HY28M-SL2.xls) into the white cell near the bottom

FPMCalc.xls Page 26

in the center of the [ControlScreen] page and then click on the “Copy Anova Data” button right below that cell.
When the transfer is complete the data will be located on the [DataTable] page. You can then close the
FPMAnova spreadsheet.

The [DataTable] worksheet in the FPMCalc.xls spreadsheet

When sediment data are compared to sediment quality guidelines (SQGs), some of the data will exceed the
SQGs („hits” or “positives”) and some will be less than or equal to the SQGs (“no-hits” or “negatives”). By
comparing proposed SQGs to results from biological tests in which hits and no-hits are based on factors such as
growth or mortality rates, we can determine if the SQGs would generate “true hits” (true positives; the SQG
predicts a hit and the biological test results also show a hit), “true no-hits” (true negatives; the SQG predicts a no-
hit and the biological test results also show a no-hit), “false hits” (false positives; the SQG predicts a hit but the
biological test results show a no-hit), or “false no-hits” (false positives; the SQG predicts a no-hit but the
biological test results show a hit). These four potential outcomes are illustrated in the table below. The goal of
the Floating Percentile Method is to generate a set of SQGs that minimizes both the false negatives and the false
positives and gives the greatest number of correct predictions.

 Sediment Standards

Hit No-Hit

Results of
Biological Tests

Hit
True Hit or

True Positive
False No-Hit or
False Negative

No-Hit
False Hit or

False Positive
True No-Hit or
True Negative

FPMCalc.xls Page 27

Before running the FPMCalc spreadsheet you must specify the percentage of false no-hits (also known as
percent false negatives, %FN) that you would like to obtain. You can do this for up to 10 different %FN values in
a single run of the spreadsheet to compare the results at different levels. A range of 5-25% is typical.

Put the lowest %FN value in the Initial False Negative Target, the highest value in the Final False Negative
Target, and how much to increase the value of each step in the Target Interval. For example, if you want results
for 5%, 10%, and 15% FN you would use 5 for the initial value, 15 for the final value, and 5 for the interval.

If you select an FN target that is lower than the lowest %FN for the given data set, the program will substitute the
first integral value above the lowest available %FN (this typically only happens for 0%FN, and rarely).
Calculations will continue without interruption but a message will be posted at the end of the run to inform you that
a substitution was made.

During the FPM calculations the program restricts the tentative standards to the range of known concentrations
for each analyte. Instead of testing every available concentration, the calculations are done iteratively and the
program attempts to converge on the best result for each analyte. You control the size of the steps taken during
the iterations by specifying the number of increments to use for the range of concentrations. The larger the
number of increments, the smaller the size of each increment, and the longer the program will take to obtain a
result. If the number of increments is too small, however, the size of the increment is large and the program will
keep jumping past its ultimate target and will take longer to converge on the best result.

Number of Increments Time of Analysis (min)

2 46.3

3 33.4

4 30.7

5 29.7

6 29.7

7 29.8

8 31.3

9 31.8

10 32.6

FPMCalc.xls Page 28

The table above shows results of program runtimes versus the number of increments for a selected data set.
These results will vary from one data set to another. You may want to experiment with this value but for
consistency with the RSET FPM calculations we recommend that you leave the “Number of Increments” set to 10.

The initial concentrations used in the FPM calculations are based on the distribution of the available analytical
data and the target %FN. The program sorts the data by analyte and creates a table with the data distributed
from lowest to highest for each analyte (see [Distributions] worksheet below). It then calculates percentile
distributions for each analyte (see [Percentiles] worksheet below) and calculates %FN and other parameters for
each percentile row (see [ErrorCalc] worksheet below). The program finds the highest percentile on the
[ErrorCalc] table that does not exceed the target %FN and takes the concentrations from the corresponding
percentile row in the [Percentiles] table, using that as the starting point for the model calculations.

The [Distributions] worksheet in the FPMCalc.xls spreadsheet

The [Percentiles] worksheet in the FPMCalc.xls spreadsheet

FPMCalc.xls Page 29

The [ErrorCalc] worksheet in the FPMCalc.xls spreadsheet

After setting the initial concentrations, the program finds the analyte with the highest number of False Positives
(#FPs), raises its concentration by one increment, and recalculates the %FN and #FP. If the %FN does not
exceed the target and the #FPs does not equal zero, the concentration is raised by another increment and
retested. If the %FN exceeds the target or the #FPs equals zero, the increment is made smaller and the
concentration lowered. This continues until the increment is sufficiently small and a concentration is reached
where either (1) the %FN would exceed the desired level if the concentration were raised another increment, or
(2) the #FP just reaches 0 and would go up again if the concentration were lowered another increment.

The Percent Precision setting on the [ControlScreen] page controls how small you want the increment to become
before ending the calculations. It is roughly a comparison of the final size of the increment to the smallest
concentration present for the analyte being tested. The lower you set the precision, the smaller the increment
must become before the calculations stop. You may want to experiment with this setting but for consistency with
the RSET FPM calculations we recommend that you leave the “Percent Precision” set to 10.

During the data analysis you have the option of pre-screening the Apparent Effects Threshold concentrations
(AETs). If you select this option on the [ControlScreen] page, before starting to raise concentrations one
increment at a time the program tests the AET concentration of each analyte to see if it can be used without
exceeding the target %FN. If so, the AET is used as the result for that analyte. If not, that analyte is taken
through the full FPM calculations one increment at a time. It is NOT recommended that you use this option at this
time, as the FPM was not originally designed to run with pre-screening for AETs and the effect of this approach
on the final result is unknown, even though it does substantially speed up the calculation process.

To use the AET pre-screening option you also must indicate if you would like the program to test for and omit
outliers during the screening. In this program an outlier is defined as a concentration that exceeds the next
closest concentration by more than a multiple that you specify. For example, the original AET calculations used
an outlier multiplier of 3. If the highest concentration for a given analyte was 15 mg/kg, then that data point would
be an outlier if the next highest concentration was less than 5 mg/kg. Although outliers can be omitted when
selecting AETs, the outliers remain in the data set and are included in the calculations for %FN and #FP.

When the program runs you can see what stage it is in by looking at the Status Bar at the bottom left of the
screen. If you prefer to observe the calculations you can do so by marking “Y” in the “Watch Calculations?” box
on the [ControlScreen] page. Watching the calculations will slow the program.

After filling in all of the options on the [ControlScreen] page, click on the “Calculate Floating Percentiles” button to
start the calculations. When the program starts it will check for certain errors or omissions. If one is encountered
the program will terminate and a message box will appear on the screen telling you what is wrong. When the
calculations are complete a message indicating the successful completion will appear on the computer screen.
Calculations may take between 10 minutes and 2 hours, depending on the size and complexity of your data set,
the options you have chosen, and the processing speed of your computer.

FPMCalc.xls Page 30

When the calculations have been completed the results are found on the [Criteria] worksheet (shown below). The
[Criteria] worksheet has three distinct sections. The uppermost rows are the results section. The first column lists
each Target %FNs that was used. The next seven columns list the percentage of positives and negatives along
with five other performance parameters used to evaluate the results.

Each of these terms is defined below.

Percent False Negatives = 100 * FalseNoHits / (TrueHits + FalseNoHits)

Percent False Positives = 100 * FalseHits / (TrueNoHits + FalseHits)

Hit Reliability = 100 * TrueHits / (TrueHits + FalseNoHits)

No-Hit Reliability = 100 * TrueNoHits / (TrueNoHits + FalseHits)

Predicted Hit Reliability = 100 * TrueHits / (TrueHits + FalseHits)

Predicted No-Hit Reliability = 100 * TrueNoHits / (TrueNoHits + FalseNoHits)

Overall Reliability = 100 * (TrueHits + TrueNoHits) / Total No. of Samples

The remaining columns hold the results for each analyte listed in alphabetical order.

The results section of the [Criteria] worksheet in the FPMCalc.xls spreadsheet

The results are displayed in 5-row sets. Under the performance measures, the first row contains the results for
the initial set of concentrations at each selected %FN and the third row contains the results for the final set of
concentrations. Under the analyte names:

Row 1 contains the initial concentrations determined by the allowable %FN,

Row 2 contains the #FP for each of the initial concentrations,

Row 3 contains the final concentrations determined by the FPM,

Row 4 contains the #FP for each of the final concentrations, and

Row 5 contains a code indicating which of the two limiting criteria determined each final concentration.

FPMCalc.xls Page 31

A code of “+” means the final concentration is where #FP = 0. A code of “-“ means that increasing the
concentration would exceed the desired %FN.

If you click on the “Hide Additional Calculation Details” button the results section table will collapse so that only
the final concentrations in the third row of each group of five rows is displayed. This will allow you to more easily
compare the results for different %FNs.

To restore the hidden rows from the results section click on the “Show Additional Calculation Details” button.

The other two buttons at the top of this page can be used to display the forms shown in Section 2.4.3.

The data summary section of the [Criteria] worksheet is located below the results section.

The data summary section of the [Criteria] worksheet in the FPMCalc.xls spreadsheet

This is where basic information about the current data set, like the number of data points, maximum and minimum
concentrations, etc. are stored. Current values of data used during the calculations, like the size of the
increments, are also stored on this part of the worksheet.

FPMCalc.xls Page 32

The bottom of the [Criteria] worksheet contains the manual test section.

The manual test section of the [Criteria] worksheet in the FPMCalc.xls spreadsheet

You can place any set of concentrations that you want to test against the current data set into the row of white
cells labeled “Place concentrations to be tested manually in the row below” and then click on the “Count
Hits/NoHits in Test Row” button. The number of true and false hits and no-hits along with the various
performance measures for those concentrations will be displayed in the yellow rows next to the “Count…” button.
If you paste a set of calculated results from the results section into the test row, you can make changes to some
of the concentrations and see if the new values make the results better or worse.

Reminder: As noted earlier in this document, if you plan to copy data from one place in the spreadsheet and
paste it into another location you should use the “Paste Special” option in the “Edit” menu and select “Paste
Values.” If you use the regular paste function you may accidentally paste formulas into the cells instead of their
numerical values. Also, the regular paste function may change the formats of the pasted cells to the formats of
the copied cells.

An additional worksheet, [DataStorage], is provided in case you want to save the results from previous
calculations. This page is only for storage; no calculations take place in [DataStorage].

Spreadsheet Macros Page 33

3. Spreadsheet Macros

3.1 Introduction

3.1.1 Document Text Conventions

In the sections where the macros are discussed the text of the macros and explanatory text included in the body

of the macros is displayed in 9-point Courier New font. The macro name and brief explanatory text are

shown in bold to make it easier to find the start of each macro. For example:

' **

' Sub Auto_Open(): Sets up spreadsheet toolbars, menus, etc.

' Works automatically on opening.

' **

Sub Auto_Open()

 Application.ScreenUpdating = False

 Call SetUpSheets

 Call SaveToolbars

 Call AddNewMenuItem

 Call ViewTitle

 Application.ScreenUpdating = True

End Sub

Many of the macros already include explanatory text in the body of the code. Each line of this text is always
preceded by an apostrophe. For example:

' Make sure that the data in the ChemData and BioData tables are

' listed in the same order so comparisons can be made. This sorts each

' table into ascending order by survey, station, and sample.

Additional explanatory text not found in the macros is shown in a box in 9 point Arial font. For example:

In the MakeDataTable Module, NumColumnSort values were assigned …

3.1.2 Common Naming and Macro Conventions

 In designing each worksheet, the Excel “Insert/Name” tool was used to name certain individual cells, part or
all of certain rows or columns, or a rectangular table of cells. For example, there is a single value for the
“Number of Samples” on the [DataSetSummary] page of the FPMData spreadsheet. “NumSamples” is the
name given to the cell containing the value for the number of samples. Therefore, when you want to refer to
this cell in a macro you only have to use “NumSamples” and do not have to know what row or column the cell
is in. Quite a few of the data are presented as groups listed in columns in data tables. For example, in the
“Initial Analytical Data” table on the [InputData] page there are seven columns of data, Survey, Station,
Sample, etc., each with room for 65,000 data. “Conc” is the name given to 65,000 cells in the column storing
the concentration data. In order to use “Conc” in a macro equation you must specify which concentration you
want to use. This is accomplished by attaching an index to the name, such as Conc(1) or Conc(23). Conc(1)
is the first entry in the 65,000-cell column named “Conc” and Conc(23) is the 23

rd
entry. When writing

equations for groups of variables like “Conc” values, “i,” “j” or “k” was usually used as the index. Therefore,
expressions like “Conc(i)” are used when names in equations stand for more than a single value.

Spreadsheet Macros Page 34

 Though not necessary, for convenience and reference all names used in a specific spreadsheet were stored
on a hidden worksheet page entitled [Names]. Some needed pieces of information are also stored on the
[Names] worksheet, such as the names of the menu bars that are closed when the program opens, thus
allowing the program to restore the original menus when the program closes.

 Each of the modules has been designated “Option Explicit.” This is a more tedious process because it

requires you to declare all variables that you plan to use before you use them. This is very helpful, however,
to avoid such common mistakes as misspelling variables or using them incorrectly. If a variable is used only
in the module in which it is declared, “dimension” (Dim) statements were often used at the beginning of the
module or at the beginning of the subroutine to declare them. For example:

Dim Time As Range, Temp As Single

Each of the modules has also been designated as an “Option Private Module.” Therefore, if you want to use variables in
modules other than the one in which they are declared you must use the “Public” statement to declare them. For
example:

Public DataTable As Range, DataUnits As Range

Public i As Integer, j As Integer, k As Integer

 Before you can refer to a variable in a macro equation you must first initialize the name by setting it equal to a
specified cell or range of cells that you already have declared as mentioned above.

Set Time = Range("Time")

Set DataTable = Range("DataTable")

The names you plan to use in a macro do not have to be exactly the same as those used for the spreadsheet
ranges. More often than not this was done for convenience. (You do NOT have to do this for all of the names
you have created in the spreadsheet, just for the names that you intend to use in the macros.)

 Most of the macros that affect what is seen on the screen are written with the following opening and closing

lines:

 Application.ScreenUpdating = False

 (Lines of macro code)

 Application.ScreenUpdating = True

This is to avoid all of the visual “chatter” that occurs on the screen if the spreadsheet must stop and update
each cell after each calculation. It also speeds up the overall process of calculation.

 Although not necessary, the term “Call” was used when running a macro from inside another macro. That

makes it easier to see what other macros are used and follow the overall process. For example:

Sub Auto_Open()

 Application.ScreenUpdating = False

 Call SetUpSheets

 ...

Spreadsheet Macros Page 35

3.1.3 Macro Usage

Some of the spreadsheets macros run automatically when you open or close the spreadsheet. Others are
activated when you click on buttons located on some of the worksheets. Most of the macros function as parts of
larger processes and are run as needed (“called”) from within one of the automatic or button-activated macros.
Some of these are used to format the data and the worksheets, and are not necessary to obtain the final results.

All three spreadsheets have macros named SetRanges() and RunProgram(), which are located in the
mod01RunProgram module. These macros do not have identical code in each of the spreadsheets but they
serve identical purposes.

3.1.3.1 The SetRanges() Macro

The SetRanges() macro initializes the variables that are used in the program. If the variables are not initialized,
any attempt to use them will result in an error. If the program encounters an error and the execution of the
program has to be stopped, the variables will have to be initialized again before they can be used when the
program is restarted. Therefore, the macro SetRanges() is called from several of the other macros to ensure that
the variables are ready to be used regardless of where you start or restart the program.

3.1.3.2 The RunProgram() Macro

The RunProgram() macro carries out the predominant functions of the spreadsheet. On each spreadsheet it is
activated by a button that is labeled with red letters. Most of the work of the RunProgram() macro is carried out
by other macros that are called from this macro. For this reason the RunProgram() macro code can be viewed
like an outline that summarizes and displays the order of the program activities.

Macro Code for FPMData.xls Page 36

3.2 Macro Code for FPMData.xls

3.2.1 Summary

FPMData.xls contains 28 Microsoft Excel® Visual Basic macros that perform specific functions for the
spreadsheet. The macros are stored in six modules. The code from each module along with some explanatory
text is listed in Sections 3.2.2 to 3.2.7. A password is required to access the modules in the spreadsheet.

3.2.1.1 Macros Activated When Spreadsheet Opens or Closes

MacroName()
Module Containing Macro

Macro Action

Auto_Open()
mod06FormatData

When you open the spreadsheet this macro (1) calls the macro SetRanges() in
mod01RunProgram to initialize all of the variables, (2) calls the macro SetUpScreen() in
mod06FormatData to close unneeded toolbars, and (3) resets all worksheets to the
standard top-left orientation.

Auto_Close()
mod06FormatData

When you close the spreadsheet this macro restores the toolbars that were closed when
the program opened and resets the formats of the worksheets.

3.2.1.2 Macros Activated from Buttons on Worksheets

MacroName()
Module Containing Macro

Button that Activates Macro

[Worksheet with Button]

Macro Action

ClearInitialAnalyticalData()
mod06FormatData

Clear Analytical Data

[InputData]

Asks to make sure you want to delete the data.
If so, it deletes all entries from the Initial
Analytical Data Table on the [InputData]
worksheet.

ClearAllTables()
mod06FormatData

Clear Previous

[InputData]

Deletes entries from all tables except
[InputData]. Calls the macros
ClearRawAndDataTables() and
ClearSumLists(), both of which are in
mod06FormatData.

StripBlanks()
mod06FormatData

Remove Blanks

[InputData]

Removes leading and trailing blanks from the
text entries in the Initial Analytical Data table.

DupeCheck()
mod01RunProgram

Check for Duplicates

[InputData]

Uses SortInputData() macro in
mod06FormatData to sort data by survey,
station, sample, and analyte. Then looks for
consecutive entries with identical values for
each of those fields.

CodeKey()
mod06FormatData

Click to View Data Codes

[InputData]

Displays a userform that explains the codes in
the Screened Data Codes table.

See Section 2.1.3.1

GenerateLists()
mod05MakeLists

Generate Data Lists

[OmitAnalytes]

Uses ChemList() and DataQualList() macros in
mod05MakeLists to fill the lists on the
[OmitAnalytes] worksheet.

SumsChemList()
mod05MakeLists

Create Analyte List

[CreateSums]

Creates and formats a list of analytes on the
[CreateSums] worksheet.

Macro Code for FPMData.xls Page 37

MacroName()
Module Containing Macro

Button that Activates Macro

[Worksheet with Button]

Macro Action

NA  Retain Group List

[CreateSums]

Although this may look like a button that
activates a macro, it is not. This is a checkbox
used to prevent the current group information
from being deleted by the Clear Previous button
on [InputData].

ClearSumLists()
mod06FormatData

Clear Lists

[CreateSums]

Deletes entries from tables on the
[CreateSums] worksheet, restores the default
color (gray) to the cells, and resets the font
color to black.

RunProgram()
mod01RunProgram

Create Data Table

[CreateSums]
See Section 3.2.1.3

ColorKey()
mod06FormatData

Click Here to View Keys to Cell Colors

[AnalyteSummary]

Displays a userform that explains the colors
used in cells on the [AnalyteSummary] page.

See Section 2.1.3.2

SaveGroup()
mod06FormatData

Save Group

[DataSetSummary]

Saves the current group information to the
FPMDataGroups.xls file.

RetrieveGroup()
mod06FormatData

Retrieve Group

[DataSetSummary]

Retrieves previously saved group information
from the FPMDataGroups.xls file.

3.2.1.3 Macros that Control the Main Function of the Program

When you click on the “Create Data Table” button, which is located on the [CreateSums] worksheet, you start the
RunProgram() macro in the mod01RunProgram module. This macro performs some basic functions on its own,
but its primary function is to run a series of macros that each carry out part of the overall process. In the table
below the RunProgram() macro code is shown in the left column and the steps that are carried out are explained
in the right column.

RunProgram() Macro Code Function

Dim Time As Range, Temp As Single

Creates a variable in which to store the overall program run
time (Time) and a variable used to temporarily store the
starting time (Temp).

Set Time = Range("Time")
Time.ClearContents
Temp = Timer

Initializes the Time variable and stores it in a cell named
“Time.” Deletes anything currently in that cell and stores the
current time (Timer), which will be used as the program start
time.

Application.StatusBar = "(1/4) Clearing Tables and Checking
Selected Inputs"

Puts a message in the status bar (located in the lower left
corner of the spreadsheet screen) to inform the user that the
program is beginning the first of four steps and describes
what will be done in that step.

Range("A1").Select

Call SetRanges

ThisFileName = "FPMData.xls Version 122808"

Stores the cursor off-screen (column A and row 1 are hidden
on every worksheet).

Calls SetRanges() in mod01RunProgram to initialize the
variables used by the program. (See Section 3.1.3.1 for
more information about SetRanges()).

Places current version name on the [InputData] page.

Macro Code for FPMData.xls Page 38

RunProgram() Macro Code Function

DataSummary.ClearContents
NameScreenedAnalytes.ClearContents
NumColumnSort.ClearContents
ScreenedOut.ClearContents

Call ClearRawAndDataTables

Deletes old entries from some of the tables in preparation for
making new tables. Calls ClearRawAndDataTables() in
mod06FormatData to delete entries from additional tables.

Application.ScreenUpdating = False Prevents the program from updating the screen after each
step. This allows the program to run faster.

NumChemInitial = Application.CountA(AnalyteNameList)
NumChemSummed = Application.CountA(SumListNums)
NumNewGroups = Application.CountA(SumGroupNames)
NumDataInitial = Application.CountA(InputName)
NumQual = Application.CountA(QualList)

Evaluates some of the parameters that will be needed in later
procedures:

NumChemInitial = initial no. of analytes in the data set,
NumChemSummed = no. of analytes in new groups,
NumNewGroups = no. of new groups created,
NumDataInitial = no. of data listed on [InputData], and
NumQual = no. of data qualifiers used in the data set.

Call InputCheck Calls InputCheck() in mod01RunProgram to check the
validity of some of the numbers that you put in the
spreadsheet. If an unacceptable value is found a message
will be displayed (see example). The program will end when
you click on “OK.”

Application.StatusBar = "(2/4) Compiling Raw Data" Updates the note in the status bar.

Call CompileRawData Calls CompileRawData() in the mod02CompileRawData,
which does the following:

(1) Puts analyte names into table headers. If you have
chosen to omit an analyte it colors the cell with that name
gray. It then counts how many data points will be eliminated
for that analyte and identifies it by putting "Analyte" in the first
column of the ScreenedData table on the [InputData] page.

(2) Sorts initial data in order of sample, survey, and station;
and counts the number of different samples in the data set.

(3) If a data point has a data qualifier that you want to omit, it
identifies it by putting "DQ" in the second column of the
ScreenedData table on the [InputData] page. On the
[AnalyteSummary] page it colors the cell containing that data
point red.

Application.StatusBar = "(3/4) Summarizing Raw Data" Updates the note in the status bar.

Call SummarizeData Calls SummarizeData() macro in the mod03SummarizeData,
which does the following:

(1) Writes names and units of new groups in table on the
[AnalyteSummary] page.

Macro Code for FPMData.xls Page 39

RunProgram() Macro Code Function

(2) Adds the data points for all group members to generate a
total for the group. Data points marked “DQ” as noted above
are not included in the sum.

(3) Identifies the analytes or data points as belonging to one
of the following six groups –

 analytes with sufficient data that are not in a group,

 analytes you retain even though they are part of a group,

 groups that you created that have sufficient data,

 analytes omitted because they are part of a group,

 analytes that you choose to omit, and

 analytes or sums that have too few data.

(4) Colors cells in the [AnalyteSummary] table based on the
group to which the analytes or data points belong.

(5) Counts the number of data points for each analyte and
determines the min and max concentrations. If analyte has
too few data, identifies it by putting "Too Few" in the third
column of the ScreenedData table on the [InputData] page.

(6) Sorts the [AnalyteSummary] table columns in the order of
the six groups noted above.

Application.StatusBar = "(4/4) Assembling Final Data Table" Updates the note in the status bar.

Call MakeDataTable Calls MakeDataTable() in mod04MakeDataTable, which
does the following:

(1) Copies the information from [AnalyteSummary] to
[DataTable] leaving out data points or analytes marked for
omission in the SumarizeData step.

(2) Counts the number of analytes in each group.

(3) Checks to make sure that the sum of analytes and data
points in the final table agrees with the initial number taking
into account any new groups or deleted analytes or data
points. If there is an error it calls ShowMsg() in
mod01RunProgram to display an error message and end the
program.

Call DataFormat Calls DataFormat in mod06FormatData, which does the
following:

(1) Puts [InputData] back into ascending order by Survey,
Station, and Sample.

(2) Formats the data tables so that the columns are an
appropriate width to make them easier to read.

(3) Calls CenterText() in mod06FormatData to center the
data in the cells of the various tables.

If RetainGroupList = "False" Then Call GroupList If you are not reusing existing group names, this calls
GroupList in mod05MakeLists, which creates a list of all of
the newly-defined groups and all of the analytes that make
up each group. This list is on the [DataSetSummary] page.

Macro Code for FPMData.xls Page 40

RunProgram() Macro Code Function

Call OmitList Calls OmitList in mod05MakeLists, which creates a list of all
analytes and groups that have been screened out. This list is
on the [DataSetSummary] page.

Sheets("AnalyteSummary").Select

Application.StatusBar = False
Application.ScreenUpdating = True

Time = Timer – Temp

MsgBox (" Calculations Completed ")

Selects the page that will appear when the program ends.

Deletes the message from the status bar.
Restores screenupdating so changes made during the
running of the program will now show up on screen.

Subtracts the initial time (Temp) from the current time (Timer)
to get the program run time.

Puts message on screen to inform the user that the program
has ended.

3.2.2 mod01RunProgram

This module contains 5 macros:

RunProgram calls each main subroutine, adds notes to the Status Bar to show progress of the calculations, and times the

calculations.

SetRanges initializes the variables by setting them equal to the previously-declared ranges.

InputCheck makes sure that required inputs with appropriate values have been entered into some of the key input ranges

before starting to sort and screen the data.

ShowMsg displays error messages generated from the InputCheck macro and shuts the program down after the message

has been reviewed.

DupeCheck checks the initial data set to determine if there are any pairs of data with an identical set of values for survey,

station, sample, and analyte name.

The code and comments for this module are shown below.

' File: FPMData.xls

' This is the first of three spreadsheets used for implementing the

' Floating Percentile Method (FPM) developed by Teresa Michelsen of

' Avocet Consulting. The FPM is used to assess sediment toxicity

' and chemical composition data to develop sediment quality guidelines.

' FPMData.xls:

' (1) accepts up to 65,000 analytical results for up to 250 chemical constituents having

' up to 100 different data qualifiers,

' (2) sorts the raw data into groups by chemical constituent,

' (3) summarizes the data for the data set as a whole and for each constituent,

' (4) generates a final data set with options to

' (a) screen out data points with specified data qualifiers,

' (b) screen out constituents with less than a specified number of data,

' (c) delete specified constituents by name, and

' (d) create up to 25 new analyte groups and sum the data for any number of

' individual constituents.

' This spreadsheet was developed by Michael R. Anderson,

' Oregon Department of Environmental Quality.

Macro Code for FPMData.xls Page 41

' Last edited: December 28, 2008

' Names shown in [Square Brackets] in the comments are names of worksheets.

Option Private Module

Option Explicit

' **

' Most variables are declared below as Public variables since they are

' used in more than one subroutine in a given module or in more than one

' module. Some variables used only in one routine are declared in that routine.

' **

Public AnalyteNameList As Range, AnalyteNameUnits As Range

Public AnalyteOmitState As Range, AnalyteRetainState As Range

Public DataHeader As Range, DataSummary As Range

Public DataTable As Range, DataUnits As Range

Public DupeConc As Range, DupeName As Range, DupeQual As Range

Public DupeSample As Range, DupeStation As Range, DupeSurvey As Range

Public DupeTable As Range, DupeTitle As Range, DupeUnits As Range

Public FinalDataTable As Range, FullDataTable As Range

Public FullInputTable As Range, FullRawDataTable As Range

Public FullRawDataTableNoHeader As Range, FullSummaryTable As Range

Public GroupMemberList As Range, GroupMemberRetain As Range, GroupNameUnits As Range

Public IDTable As Range, InputConc As Range, InputHeader As Range

Public InputName As Range, InputQual As Range, InputSample As Range

Public InputStation As Range, InputSurvey As Range

Public InputTable As Range, InputUnits As Range

Public MaxConc As Range, MinConc As Range

Public MinNumDetects As Range, NameScreenedAnalytes As Range

Public NetNumChemInitial As Range, NumChemOmitted As Range

Public NetNumDataInitial As Range

Public NumChemInitial As Range, NumNewGroups As Range

Public NumChemSumOmitted As Range, NumChemSumRetained As Range

Public NumChemTooFewData As Range, NumColumnSort As Range

Public NumDataBadDQs As Range, NumDataPoints As Range

Public NumDataInitial As Range, NumDataNewGroups As Range

Public NumDataNewGroupsOmitted As Range, NumDataNewGroupsRetained As Range

Public NumDataNewSums As Range, NumDataOmitted As Range

Public NumFinalDataPoints As Range, NumDataTooFewData As Range

Public NumDataSumOmitted As Range, NumDataSumRetained As Range

Public NumNewGroupsRetained As Range, NumNewGroupsOmitted As Range

Public NumOmitDQs As Range, NumSamples As Range, QualList As Range

Public QualState As Range, RawDataHeader As Range

Public RawDataTable As Range, RawDataTableSort As Range, RawDataUnits As Range

Public RawIDTable As Range, RawSample As Range

Public RawStation As Range, RawSurvey As Range

Public RetainGroupList As Range, ScreenedOut As Range

Public ScreenedOut1 As Range, ScreenedOut2 As Range

Public ScreenedOut3 As Range, SumGroupNames As Range

Public SummaryHeader As Range, SumListNames As Range

Public SumListNums As Range, SumListUnits As Range

Public ThisFileName As Range, ToolBarStorage As Range

Public i As Integer, j As Integer, k As Integer, m As Integer, n As Integer

Public ListCapacity As Integer, NumChemSummed As Integer

Public NumCol1 As Integer, NumCol2 As Integer, NumDupes As Integer

Public NumStations As Integer, NumQual As Integer

Public Workrange As Object

Public Comment As String

Macro Code for FPMData.xls Page 42

' **

' RunProgram() calls each main subroutine, adds notes to Status Bar

' to show progress of the calculations, and times the calculations.

' **

Sub RunProgram()

Dim Time As Range, Temp As Single

Set Time = Range("Time")

Time.ClearContents

Temp = Timer

Application.StatusBar = "(1/4) Clearing Tables and Checking Selected Inputs"

Range("A1").Select

Call SetRanges

' When the program is revised change the date in the line below.

ThisFileName = "FPMData.xls Version 122808"

' Delete old entries from tables in preparation for making new tables.

DataSummary.ClearContents

NameScreenedAnalytes.ClearContents

NumColumnSort.ClearContents

ScreenedOut.ClearContents

Call ClearRawAndDataTables

' This prevents the program from updating the screen after each step,

' which allows the program to run faster.

Application.ScreenUpdating = False

' Evaluate some parameters that will be needed in later procedures:

' NumChemInitial = initial number of analytes in the data set,

' NumChemSummed = no. of analytes incorporated into new groups,

' NumNewGroups = no. of new groups created,

' NumDataInitial = no. of data points listed on the [InputData] worksheet, and

' NumQual = no. of data qualifiers used in the data set.

NumChemInitial = Application.CountA(AnalyteNameList)

NumChemSummed = Application.CountA(SumListNums)

NumNewGroups = Application.CountA(SumGroupNames)

NumDataInitial = Application.CountA(InputName)

NumQual = Application.CountA(QualList)

' Check the validity of selected inputs before screening.

Call InputCheck

' Place note in status bar so that progress of program can be observed.

Application.StatusBar = "(2/4) Compiling Raw Data"

Call CompileRawData

Application.StatusBar = "(3/4) Summarizing Raw Data"

Call SummarizeData

Macro Code for FPMData.xls Page 43

Application.StatusBar = "(4/4) Assembling Final Data Table"

Call MakeDataTable

Call DataFormat

If RetainGroupList = "False" Then Call GroupList

Call OmitList

Sheets("AnalyteSummary").Select

Application.StatusBar = False

Application.ScreenUpdating = True

Time = Timer - Temp

MsgBox (" Calculations Completed ")

End Sub

' **

' SetRanges() initializes the variables by setting them equal to

' the values in the previously-declared ranges. This is done here

' for variables that are used in more than one macro. Variables

' used in only one macro are initialized in the relevant macro.

' **

Sub SetRanges()

Set AnalyteNameList = Range("AnalyteNameList")

Set AnalyteNameUnits = Range("AnalyteNameUnits")

Set AnalyteOmitState = Range("AnalyteOmitState")

Set AnalyteRetainState = Range("AnalyteRetainState")

Set DataHeader = Range("DataHeader")

Set DataSummary = Range("DataSummary")

Set DataTable = Range("DataTable")

Set DataUnits = Range("DataUnits")

Set DupeConc = Range("DupeConc")

Set DupeName = Range("DupeName")

Set DupeQual = Range("DupeQual")

Set DupeSample = Range("DupeSample")

Set DupeStation = Range("DupeStation")

Set DupeSurvey = Range("DupeSurvey")

Set DupeTable = Range("DupeTable")

Set DupeTitle = Range("DupeTitle")

Set DupeUnits = Range("DupeUnits")

Set FinalDataTable = Range("FinalDataTable")

Set FullDataTable = Range("FullDataTable")

Set FullInputTable = Range("FullInputTable")

Set FullRawDataTable = Range("FullRawDataTable")

Set FullRawDataTableNoHeader = Range("FullRawDataTableNoHeader")

Set FullSummaryTable = Range("FullSummaryTable")

Set GroupMemberList = Range("GroupMemberList")

Set GroupMemberRetain = Range("GroupMemberRetain")

Set GroupNameUnits = Range("GroupNameUnits")

Set IDTable = Range("IDTable")

Set InputConc = Range("InputConc")

Set InputHeader = Range("InputHeader")

Set InputName = Range("InputName")

Set InputQual = Range("InputQual")

Set InputSample = Range("InputSample")

Set InputStation = Range("InputStation")

Set InputSurvey = Range("InputSurvey")

Set InputTable = Range("InputTable")

Macro Code for FPMData.xls Page 44

Set InputUnits = Range("InputUnits")

Set MaxConc = Range("MaxConc")

Set MinConc = Range("MinConc")

Set MinNumDetects = Range("MinNumDetects")

Set NameScreenedAnalytes = Range("NameScreenedAnalytes")

Set NetNumChemInitial = Range("NetNumChemInitial")

Set NetNumDataInitial = Range("NetNumDataInitial")

Set NumChemInitial = Range("NumChemInitial")

Set NumChemOmitted = Range("NumChemOmitted")

Set NumChemSumOmitted = Range("NumChemSumOmitted")

Set NumChemSumRetained = Range("NumChemSumRetained")

Set NumChemTooFewData = Range("NumChemTooFewData")

Set NumColumnSort = Range("NumColumnSort")

Set NumDataBadDQs = Range("NumDataBadDQs")

Set NumDataInitial = Range("NumDataInitial")

Set NumDataNewGroups = Range("NumDataNewGroups")

Set NumDataNewGroupsOmitted = Range("NumDataNewGroupsOmitted")

Set NumDataNewGroupsRetained = Range("NumDataNewGroupsRetained")

Set NumDataOmitted = Range("NumDataOmitted")

Set NumDataPoints = Range("NumDataPoints")

Set NumDataSumOmitted = Range("NumDataSumOmitted")

Set NumDataSumRetained = Range("NumDataSumRetained")

Set NumDataTooFewData = Range("NumDataTooFewData")

Set NumFinalDataPoints = Range("NumFinalDataPoints")

Set NumNewGroups = Range("NumNewGroups")

Set NumNewGroupsOmitted = Range("NumNewGroupsOmitted")

Set NumNewGroupsRetained = Range("NumNewGroupsRetained")

Set NumOmitDQs = Range("NumOmitDQs")

Set NumSamples = Range("NumSamples")

Set QualList = Range("QualList")

Set QualState = Range("QualState")

Set RawDataHeader = Range("RawDataHeader")

Set RawDataTable = Range("RawDataTable")

Set RawDataTableSort = Range("RawDataTableSort")

Set RawDataUnits = Range("RawDataUnits")

Set RawIDTable = Range("RawIDTable")

Set RawSample = Range("RawSample")

Set RawStation = Range("RawStation")

Set RawSurvey = Range("RawSurvey")

Set RetainGroupList = Range("RetainGroupList")

Set ScreenedOut = Range("ScreenedOut")

Set ScreenedOut1 = Range("ScreenedOut1")

Set ScreenedOut2 = Range("ScreenedOut2")

Set ScreenedOut3 = Range("ScreenedOut3")

Set SumGroupNames = Range("SumGroupNames")

Set SummaryHeader = Range("SummaryHeader")

Set SumListNames = Range("SumListNames")

Set SumListNums = Range("SumListNums")

Set SumListUnits = Range("SumListUnits")

Set ThisFileName = Range("ThisFileName")

Set ToolBarStorage = Range("ToolBarStorage")

End Sub

Macro Code for FPMData.xls Page 45

' **

' InputCheck() makes sure that required inputs with appropriate

' values have been entered into some of the key input ranges

' before starting to sort and screen data.

' **

Sub InputCheck()

Dim NumGroups As Integer

For i = 1 To NumChemInitial

' Make sure user is not trying to use an omitted analyte in a sum.

 If (AnalyteOmitState(i) = "True" And SumListNums(i) <> "") Then

 Sheets("CreateSums").Select: Range(SumListNames(i), SumListNums(i)).Select

 Comment = "Omitted analytes cannot be used in sums."

 Call ShowMsg

 End If

' Make sure user is not trying to retain an analyte that is not used in a sum.

 If (AnalyteRetainState(i) = "True" And SumListNums(i) = "") Then

 Sheets("CreateSums").Select: Range(SumListNames(i), SumListNums(i)).Select

 Comment = "You cannot select an analyte to be retained if it is not used in a sum."

 Call ShowMsg

 End If

' Make sure user has not marked an analyte both for retention and omission.

 If (AnalyteOmitState(i) = "True" And AnalyteRetainState(i) = "True") Then

 Sheets("OmitAnalytes").Select: AnalyteNameList(i).Select

 Comment = "You cannot omit and retain the same analyte (duh)"

 Call ShowMsg

 End If

Next i

' Make sure there's an entry in the "Omit Chem w/Data Pts <" box

If (MinNumDetects = "" Or MinNumDetects < 1) Then

 Sheets("OmitAnalytes").Select: MinNumDetects.Select

 Comment = "'Omit Chem w/Data points <' must contain an integer >= 1."

 Call ShowMsg

End If

' Make sure the entry in the "Omit Chem w/Data Pts <" box is an integer

If (MinNumDetects <> Int(MinNumDetects)) Then

 Sheets("OmitAnalytes").Select: MinNumDetects.Select

 Comment = "'Omit Chem w/Data points <' must contain an INTEGER."

 Call ShowMsg

End If

Macro Code for FPMData.xls Page 46

' Make sure the analyte list is has been created

If AnalyteNameList(1) = "" Then

 Sheets("OmitAnalytes").Select: AnalyteNameList.Select

 Comment = "'Analyte List' must be populated before data can be screened."

 Call ShowMsg

End If

' Make sure that the numbers of all defined group names are used in the analyte list,

' and all of the numbers used in the analyte list are associated with defined group names.

For i = 1 To 25

 If i <= NumNewGroups And SumGroupNames(i) = "" Then

 Comment = "Defined group names must start on the first line and be listed consecutively

without skipping any lines."

 Sheets("CreateSums").Select: SumGroupNames.Select

 Call ShowMsg

 ElseIf i > NumNewGroups And SumGroupNames(i) <> "" Then

 Comment = "There is no group name defined for " & i & "."

 Sheets("CreateSums").Select: SumGroupNames.Select

 Call ShowMsg

 ElseIf i <= NumNewGroups And Application.CountIf(SumListNums, i) < 2 Then

 Comment = "There must be at least two analytes for each defined group number."

 Sheets("CreateSums").Select: SumListNums.Select

 Call ShowMsg

 ElseIf i > NumNewGroups And Application.CountIf(SumListNums, i) > 0 Then

 Comment = "Every number entered into the analyte list must have an associated group name."

 Sheets("CreateSums").Select: SumListNums.Select

 Call ShowMsg

 End If

Next i

' Make sure that all members of a given group have data with compatible units.

NumGroups = Application.CountA(SumGroupNames)

GroupNameUnits = ""

For i = 1 To NumGroups

 For j = 1 To NumChemInitial

 If SumListNums(j) <> "" Then

 If SumListNums(j) = i And GroupNameUnits(i) = "" Then

 GroupNameUnits(i) = SumListUnits(j)

 ElseIf SumListNums(j) = i And SumListUnits(j) <> GroupNameUnits(i) Then

 Sheets("CreateSums").Select

 Range(SumGroupNames(i), GroupNameUnits(i)).Select

 Comment = "The data for all analytes in a group must have the same units."

 Call ShowMsg

 End If

 End If

 Next j

Next i

End Sub

Macro Code for FPMData.xls Page 47

' **

' ShowMsg() Displays relevant error message from InputCheck()

' and MakeDataTable() and shuts the program down after the

' message has been reviewed.

' **

Sub ShowMsg()

Selection.Interior.Pattern = xlLightUp

Application.ScreenUpdating = True

MsgBox (Comment)

Selection.Interior.Pattern = xlNone

Range("A1").Select

Application.StatusBar = "": End

End Sub

' **

' DupeCheck tests to see if two or more data points have identical values

' for all four identifiers: survey, station, sample, and analyte name.

' If any are found, one of each pair is moved to a separate storage table.

' This is called from a button on the [InputData] page.

' **

Sub DupeCheck()

Application.ScreenUpdating = False

Call SetRanges

Call SortInputData

NumDupes = 0

NumDataInitial = Application.CountA(InputName)

DupeTable.ClearContents

For i = 1 To NumDataInitial

 If InputSurvey(i) = InputSurvey(i - 1) Then

 If InputStation(i) = InputStation(i - 1) Then

 If InputSample(i) = InputSample(i - 1) Then

 If InputName(i) = InputName(i - 1) Then

 NumDupes = NumDupes + 1

 DupeSurvey(NumDupes) = InputSurvey(i): InputSurvey(i) = ""

 DupeStation(NumDupes) = InputStation(i): InputStation(i) = ""

 DupeSample(NumDupes) = InputSample(i): InputSample(i) = ""

 DupeName(NumDupes) = InputName(i): InputName(i) = ""

 DupeConc(NumDupes) = InputConc(i): InputConc(i) = ""

 DupeUnits(NumDupes) = InputUnits(i): InputUnits(i) = ""

 DupeQual(NumDupes) = InputQual(i): InputQual(i) = ""

 End If

 End If

 End If

 End If

Next i

Macro Code for FPMData.xls Page 48

If NumDupes = 0 Then

 MsgBox ("No duplicates have been found.")

ElseIf NumDupes > 0 Then

 FullInputTable.Sort _

 Key1:=InputSurvey, Order1:=xlAscending, _

 Key2:=InputStation, Order2:=xlAscending, _

 Key3:=InputSample, Order3:=xlAscending, _

 Header:=xlYes, _

 Orientation:=xlTopToBottom

 Application.ScreenUpdating = True

 DupeTitle.Select

 MsgBox (NumDupes & " duplicate(s) have been found.")

End If

End Sub

This is the end of FPMData.xls mod01RunProgram.

Macro Code for FPMData.xls Page 49

3.2.3 mod02CompileRawData

This module contains only 1 macro, CompileRawData. The code and comments are shown below.

Option Private Module

Option Explicit

' **

' CompileRawData() sorts the data on the [InputData] page into groups by analyte

' and stores the results on the [AnalyteSummary] page. It also identifies some

' of the data points that will be screened out before carrying out the Floating

' Percentile calculations.

' **

Sub CompileRawData()

' Copy the names from "Analyte List" on the [OmitAnalytes] worksheet into the

' header rows on both the Summary Table and the Sorted Data Table on the

' [AnalyteSummary] worksheet.

NumChemOmitted = 0

NumDataInitial = Application.CountA(InputName)

For i = 1 To NumChemInitial

 RawDataHeader(i) = AnalyteNameList(i)

 SummaryHeader(i) = AnalyteNameList(i)

 RawDataUnits(i) = AnalyteNameUnits(i)

 NumOmitDQs(i) = 0

' If the analyte is going to be omitted (i.e., you put a check next to it

' in the Analyte List) identify it by coloring the cell with its name in

' the header rows dark gray (ColorIndex = 16). Also make the font a lighter

' color to make it easier to read against the dark gray background.

 If AnalyteOmitState(i) = "True" Then

 SummaryHeader(i).Interior.ColorIndex = 16

 SummaryHeader(i).Font.ColorIndex = 2

 RawDataHeader(i).Interior.ColorIndex = 16

 RawDataHeader(i).Font.ColorIndex = 2

' Check the data on the [InputData] page and mark each data point

' for the omitted analyte by putting "Analyte" in the first column

' of the ScreenedData table on the [InputData] page.

 For j = 1 To NumDataInitial

 If InputName(j) = AnalyteNameList(i) Then ScreenedOut1(j) = "Analyte"

 Next j

 End If

Next i

Macro Code for FPMData.xls Page 50

' Sort the [InputData] in ascending order by sample, survey, and

' station in preparation for counting the number of different samples

' in the data set.

FullInputTable.Sort _

 Key1:=InputSample, Order1:=xlAscending, _

 Key2:=InputSurvey, Order2:=xlAscending, _

 Key3:=InputStation, Order3:=xlAscending, _

 Header:=xlYes, _

 Orientation:=xlTopToBottom

' To determine the number of samples, go down the list and count how

' often the sample name changes. Since the data are sorted by sample name,

' each change represents a new sample and the total is the number of

' different samples. Note that the first entry (i.e., InputSample(1))

' is immediately counted because it differs from InputSample(0), which

' is the column name in the header.

NumSamples = 0

For i = 1 To NumDataInitial

' Each time a new sample name is encountered, count it and copy the ID

' information (survey, station, and sample names) from [InputData] to

' the next available row in the Sorted Data Table on the [AnalyteSummary]

' worksheet.

 If InputSample(i) <> InputSample(i - 1) Then

 NumSamples = NumSamples + 1

 RawSurvey(NumSamples) = InputSurvey(i)

 RawStation(NumSamples) = InputStation(i)

 RawSample(NumSamples) = InputSample(i)

 End If

' If the data point has a data qualifier that is to be omitted (i.e., you

' put a check next to it in the Data Qualifier list), put "DQ" in the second

' column of the Screened Data table on the [InputData] page and then count

' it by adding 1 to the number of omitted DQs under the appropriate analyte

' name on the [AnalyteSummary] worksheet.

 For j = 1 To NumQual

 If (InputQual(i) = QualList(j) And QualState(j) = "True") Then

 ScreenedOut2(i) = "DQ"

 For k = 1 To NumChemInitial

 If InputName(i) = RawDataHeader(k) Then

 NumOmitDQs(k) = NumOmitDQs(k) + 1

 Exit For

 End If

 Next k

 End If

 Next j

Macro Code for FPMData.xls Page 51

' Enter the concentration into the Sorted Data table on the [AnalyteSummary]

' worksheet. First, find the correct column on [AnalyteSummary] by matching

' the chemical name. Then copy the analytical result from [InputData] to

' [AnalyteSummary] and jump out of loop. If this data point is to be omitted

' due to unacceptable DQ, identify it by coloring the cell red (ColorIndex = 3),

' otherwise uncolor the cell (ColorIndex = xlNone).

 For j = 1 To NumChemInitial

 If RawDataHeader(j) = InputName(i) Then

 RawDataTable(NumSamples, j) = InputConc(i)

 If ScreenedOut2(i) = "DQ" Then

 RawDataTable(NumSamples, j).Interior.ColorIndex = 3

 Else

 RawDataTable(NumSamples, j).Interior.ColorIndex = xlNone

 End If

 Exit For

 End If

 Next j

Next i

End Sub

This is the end of FPMData.xls mod02CompileRawData.

Macro Code for FPMData.xls Page 52

3.2.4 mod03SummarizeData

This module contains only 1 macro, SummarizeData. The code and comments are shown below.

Option Private Module

Option Explicit

' **

' SummarizeData() generates columns of data for the new groups of summed

' analytes. Then it summarizes information about all of the analytes, old

' and new, from the [AnalyteSummary] worksheet and stores it in a Summary

' Table on the [AnalyteSummary] worksheet.

' **

Sub SummarizeData()

' Write the names and units of the new groups in the headers on the [AnalyteSummary]

' page. Start with the first empty column after the original analytes.

For k = 1 To NumNewGroups

 RawDataHeader(NumChemInitial + k) = SumGroupNames(k)

 RawDataUnits(NumChemInitial + k) = GroupNameUnits(k)

 SummaryHeader(NumChemInitial + k) = SumGroupNames(k)

Next k

' To create the new sums, check each analyte at every station.

' If the analyte is not selected for summing, skip it (GoTo Continue1).

' If the analyte is selected but the data point cell is empty, skip it.

' If selected and there is a data point but it doesn't have an OK DQ, skip it.

' If selected, there is a data point, and DQ is OK, add it to the appropriate sum.

For i = 1 To NumSamples

 For j = 1 To NumChemInitial

 If SumListNums(j) = "" Then GoTo Continue1

 If RawDataTable(i, j) = "" Then GoTo Continue1

 If RawDataTable(i, j).Interior.ColorIndex = 3 Then GoTo Continue1

 RawDataTable(i, NumChemInitial + SumListNums(j)) = _

 RawDataTable(i, NumChemInitial + SumListNums(j)) + RawDataTable(i, j)

Continue1:

 Next j

Next i

Sheets("AnalyteSummary").Select

For k = 1 To NumChemInitial + NumNewGroups

 NumColumnSort(k) = 0

Next k

' After all of the data have been compiled and, if necessary, summed,

' the raw data table is sorted into the following six groups:

' (1) analytes with sufficient data that you did not put into a group,

' (2) analytes that you choose to retain even though they are part of a group,

' (3) groups that you created that have sufficient data,

' (4) analytes that are omitted by default because they are part of a group,

' (5) analytes that you choose to omit regardless of the amount of data, and

Macro Code for FPMData.xls Page 53

' (6) analytes or sums that have less than the minimum number of data.

' Additional explanation on how the data are handled:

' (a) If you choose to omit an analyte, it will be omitted regardless of the number of data.

' You cannot use such an analyte in a group.

' (b) If you put an analyte into a group, only the group will appear in the final data table.

' The analyte will not be shown in the final table unless you choose to retain it.

' (c) If you choose to retain an analyte that is part of a group, it will be retained regardless

' of the number of data. You cannot retain an analyte that you have omitted.

' (d) If an analyte that you have selected to be in a group has fewer than the specified

' minimum number of data, it will still be included in the sum for that group.

' (e) If an analyte has fewer than the specified minimum number of data, it will not

' be included in the final data table unless you have chosen to retain it.

' (f) If a group has fewer than the specified minimum number of data, that group will be

' omitted from the final data table.

' To prepare for that sorting step, whenever an analyte is identified as belonging

' to one of the six groups described above, the relevant integer is written above

' it in a hidden row named NumColumnSort.

NumColumnSort is a row hidden at the top of the [Analylte Summary] page from F1 to IU1.

For k = 1 To NumChemInitial

' Identify the analytes that have been incorporated into groups (SumListNums(k) <> "").

' If a grouped analyte is to be included in the final table (AnalyteRetainState(k) =

' "True"), color the headers for that analyte on the [AnalyteSummary] worksheet blue

' (ColorIndex = 33) and add 2 to the NumSortColumn. If a grouped analyte is not being

' retained (AnalyteRetainState(k) = "False"), color the headers for that analyte on the

' [AnalyteSummary] worksheet orange (ColorIndex = 45) and add 8 to the NumSortColumn.

 If SumListNums(k) <> "" And AnalyteRetainState(k) = "True" Then

 SummaryHeader(k).Interior.ColorIndex = 33

 RawDataHeader(k).Interior.ColorIndex = 33

 NumColumnSort(k) = NumColumnSort(k) + 2

 ElseIf SumListNums(k) <> "" And AnalyteRetainState(k) = "False" Then

 SummaryHeader(k).Interior.ColorIndex = 45

 RawDataHeader(k).Interior.ColorIndex = 45

 NumColumnSort(k) = NumColumnSort(k) + 8

' Identify the analytes that you want to omit (AnalyteOmitState(k) = "True").

' When one of these is encountered, add 16 to the NumSortColumn. The header

' cells were already colored dark gray in the CompileRawData module.

 ElseIf AnalyteOmitState(k) = "True" Then

 NumColumnSort(k) = NumColumnSort(k) + 16

' If an original analyte is not part of a group and is not being omitted,

' identify it by coloring the header light yellow (ColorIndex=36)

' and add 1 to the NumSortColumn.

 Else

 SummaryHeader(k).Interior.ColorIndex = 36

 RawDataHeader(k).Interior.ColorIndex = 36

 NumColumnSort(k) = NumColumnSort(k) + 1

 End If

Next k

Macro Code for FPMData.xls Page 54

' That completes the columns of the original data. Now check the

' columns of newly-formed sums. Identify them by coloring their

' headers green (ColorIndex=50) and add 4 to the NumSortColumn.

' Since the sums are made only from data with acceptable quality,

' place a 0 in the summary table for the "Number with Unacceptable

' Data Qualifiers."

For k = 1 To NumNewGroups

 SummaryHeader(NumChemInitial + k).Interior.ColorIndex = 50

 RawDataHeader(NumChemInitial + k).Interior.ColorIndex = 50

 NumColumnSort(NumChemInitial + k) = NumColumnSort(NumChemInitial + k) + 4

 NumOmitDQs(NumChemInitial + k) = 0

Next k

' Review all old and new analytes and summarize number of data

' points, maximum value, minimum value, etc. for each analyte.

NumChemTooFewData = 0

For i = 1 To NumChemInitial + NumNewGroups

' Count number of initial data points, find the maximum & minimum,

' and calculate the final number of data points for each analyte.

 Range(RawDataTable(1, i), RawDataTable(NumSamples, i)).Select

 Set Workrange = Selection

 NumDataPoints(i) = Application.CountA(Workrange)

 MinConc(i) = Application.Min(Workrange)

 MaxConc(i) = Application.Max(Workrange)

 NumFinalDataPoints(i) = NumDataPoints(i) - NumOmitDQs(i)

' Compare the number of data points to the minimum requirement. If one of the

' original analytes does not have enough data, mark the data points on [InputData]

' as "Too Few," count the analyte, and add 32 to its sort number. If a group does

' not have enough data, just count it and add 32 to its sort number. Then all of

' these analytes, even those omitted or retained, will be marked as having too

' few data by adding diagonal lines to the header cell.

 If NumFinalDataPoints(i) < MinNumDetects Then

 If i <= NumChemInitial Then

 If AnalyteOmitState(i) = "False" Then

 For k = 1 To NumDataInitial

 If InputName(k) = RawDataHeader(i) Then ScreenedOut3(k) = "Too Few"

 Next k

 NumColumnSort(i) = NumColumnSort(i) + 32

 End If

 Else

 NumColumnSort(i) = NumColumnSort(i) + 32

 End If

 SummaryHeader(i).Interior.Pattern = xlLightUp

 RawDataHeader(i).Interior.Pattern = xlLightUp

 End If

Next i

Macro Code for FPMData.xls Page 55

' As discussed above, use the numbers that were just placed in NumColumnSort

' to sort the Sorted Data table on the [AnalyteSummary] worksheet so that the

' analytes are grouped in the following order:

' (1) remaining original analytes (light yellow, "NetNumChemInitial"),

' (2) analytes used in newly formed groups that are retained in final table

' (blue, "NumChemSumRetain"),

' (3) newly formed analyte groups (green, "NumNewGroups"),

' (4) analytes used in newly formed groups that are omitted from the final table

' (orange, "NumChemSumOmit"),

' (5) analytes that were omitted by choice (dark gray, "NumChemDeleted"), and

' (6) analytes that have too few data points (slash marks over any of the colors

' in groups 1 - 4 above, "NumChemTooFewData").

RawDataTableSort.Sort _

 Key1:=Range("NumColumnSort"), Order1:=xlAscending, _

 Key2:=Range("SummaryHeader"), Order2:=xlAscending, _

 Orientation:=xlLeftToRight

NOTE: This is the only place in the FPMData program where I used cell number references (C20, D20, and E20) instead of
named ranges to identify a location in the spreadsheet. These are the locations of the first data cells in the Survey, Station,
and Sample columns of the” Full Data Set Sorted by Analyte” table on the [AnalyteSummary] worksheet. Therefore, if
changes are ever made to the [AnalyteSummary] worksheet, such as adding or deleting columns or rows, you might have to
change the cells listed after Key1, Key2, and Key3.

FullRawDataTableNoHeader.Sort _

 Key1:=Range("C20"), Order1:=xlAscending, _

 Key2:=Range("D20"), Order2:=xlAscending, _

 Key3:=Range("E20"), Order3:=xlAscending, _

 Header:=xlNo, _

 Orientation:=xlTopToBottom

' Count the number of data points screened out for having unacceptable data quality.

NumDataBadDQs = Application.CountIf(ScreenedOut2, "DQ")

End Sub

This is the end of FPMData.xls mod03SummarizeData.

Macro Code for FPMData.xls Page 56

3.2.5 mod04MakeDataTable

This module contains only 1 macro, MakeDataTable. The code and comments are shown below.

Option Private Module

Option Explicit

' **

' MakeDataTable() copies the information from [AnalyteSummary] to [DataTable]

' leaving out data points that either do not meet the specified data

' qualifiers and analytes that are being omitted.

' **

Sub MakeDataTable()

' NetNumChemInitial = unsummed analytes with sufficient data to be retained,

' NumChemSumRetained = summed analytes retained by choice,

' NumNewGroupsRetained = new groups with sufficient data to be retained,

' NumChemSumOmitted = summed analytes omitted by default,

' NumChemOmitted = analytes omitted by choice,

' NumChemTooFewData = analytes omitted for having too few data, and

' NumNewGroupsOmitted = new groups omitted for having too few data.

NetNumChemInitial = Application.CountIf(NumColumnSort, 1)

NumChemSumRetained = Application.CountIf(NumColumnSort, 2)

NumNewGroupsRetained = Application.CountIf(NumColumnSort, 4)

NumChemSumOmitted = Application.CountIf(NumColumnSort, 8)

NumChemSumOmitted = NumChemSumOmitted + Application.CountIf(NumColumnSort, 40)

NumChemOmitted = Application.CountIf(NumColumnSort, 16)

NumChemTooFewData = Application.CountIf(NumColumnSort, 33)

NumChemTooFewData = NumChemTooFewData + Application.CountIf(NumColumnSort, 34)

NumNewGroupsOmitted = Application.CountIf(NumColumnSort, 36)

In the MakeDataTable Module, NumColumnSort values were assigned for each of the 6 following conditions:

 Analyte put into a group but intentionally retained by user: NumColumnSort = 2
 Analyte put into a group and not retained (default): NumColumnSort = 8
 Analyte omitted on purpose by user: NumColumnSort = 16
 Original analyte not used in a new group or omitted on purpose: NumColumnSort = 1
 Newly formed group defined by the user: NumColumnSort = 4
 Analyte with insufficient data: NumColumnSort = 32

All analytes started with a value of zero. When an analyte was found to meet one of the listed conditions the value of that
condition was added to the relevant cell in the hidden NumColumnSort row. Therefore, analytes that fit more than one
condition will have some combination of the 6 values given above. For example, an original analyte that was not used in a
group or omitted is assigned a 1. If that analyte is later found to have too few data it is also assigned a 32. So, it ends up with
NumColumnSort = 33. A newly formed group with insufficient data = 36, etc.

' Copy the ID information (survey, station, and sample numbers) from the

' [AnalyteSummary] table and paste it into the relevant columns in the [DataTable].

RawIDTable.Copy

IDTable.PasteSpecial Paste:=xlPasteValues

' Copy analyte names from [AnalyteSummary] to [DataTable] but only for the remaining

' original unscreened analytes (NetNumChemInitial), newly defined groups that have

' sufficient data (NumNewGroupsRetained), and analytes used in newly defined groups

' that the user retains on purpose (NumChemSumRetained). Check each data point in

' [AnalyteSummary] table to see if it should be omitted from the final data table due

' to poor DQ. If so, leave that cell in the [DataTable] blank; if not, copy it to

' [DataTable].

Macro Code for FPMData.xls Page 57

For i = 1 To NetNumChemInitial + NumNewGroupsRetained + NumChemSumRetained

 DataHeader(i) = RawDataHeader(i)

 DataUnits(i) = RawDataUnits(i)

' While transferring data, omit those that do not have acceptable DQs.

' (They had previously been marked with red cells.)

 For j = 1 To NumSamples

 If RawDataTable(j, i).Interior.ColorIndex = 3 Then

 DataTable(j, i) = ""

 Else

 DataTable(j, i) = RawDataTable(j, i)

 End If

 Next j

Next i

' Count the number of data points in each of the groups. Some of the groups

' may already have values at this stage, but this is after all of the data

' manipulations have been completed and should represent the final values.

' These columns hold the original analytes that were not screened or summed.

' Light yellow header (Sort Number = 1)

NumCol1 = 1

NumCol2 = Application.CountIf(NumColumnSort, 1)

If NumCol2 >= NumCol1 Then

 Range(NumFinalDataPoints(NumCol1), NumFinalDataPoints(NumCol2)).Select

 Set Workrange = Selection

 NetNumDataInitial = Application.Sum(Workrange)

Else: NetNumDataInitial = 0

End If

' These columns hold the newly defined groups.

' Blue header (Sort Number = 2)

NumCol1 = NumCol2 + 1

NumCol2 = NumCol2 + Application.CountIf(NumColumnSort, 2)

If NumCol2 >= NumCol1 Then

 Range(NumFinalDataPoints(NumCol1), NumFinalDataPoints(NumCol2)).Select

 Set Workrange = Selection

 NumDataSumRetained = Application.Sum(Workrange)

Else: NumDataSumRetained = 0

End If

' These columns hold the original analytes that were summed and retained.

' Green header (Sort Number = 4)

NumCol1 = NumCol2 + 1

NumCol2 = NumCol2 + Application.CountIf(NumColumnSort, 4)

If NumCol2 >= NumCol1 Then

 Range(NumFinalDataPoints(NumCol1), NumFinalDataPoints(NumCol2)).Select

 Set Workrange = Selection

 NumDataNewGroupsRetained = Application.Sum(Workrange)

Else: NumDataNewGroupsRetained = 0

End If

Macro Code for FPMData.xls Page 58

' These columns hold the original analytes that were summed and omitted.

' Orange header (Sort Number = 8)

NumCol1 = NumCol2 + 1

NumCol2 = NumCol2 + Application.CountIf(NumColumnSort, 8)

If NumCol2 >= NumCol1 Then

 Range(NumFinalDataPoints(NumCol1), NumFinalDataPoints(NumCol2)).Select

 Set Workrange = Selection

 NumDataSumOmitted = Application.Sum(Workrange)

Else: NumDataSumOmitted = 0

End If

' These columns hold the original analytes that were deleted by choice.

' Dark gray header (Sort Number = 16)

NumCol1 = NumCol2 + 1

NumCol2 = NumCol2 + Application.CountIf(NumColumnSort, 16)

If NumCol2 >= NumCol1 Then

 Range(NumFinalDataPoints(NumCol1), NumFinalDataPoints(NumCol2)).Select

 Set Workrange = Selection

 NumDataOmitted = Application.Sum(Workrange)

Else: NumDataOmitted = 0

End If

' The following 4 column groups hold analytes omitted for having too few data.

' Diagonal lines over any of the above colors (Sort Number = Original Sort Number + 32)

NumCol1 = NumCol2 + 1

NumCol2 = NumCol2 + Application.CountIf(NumColumnSort, 33)

If NumCol2 >= NumCol1 Then

 Range(NumFinalDataPoints(NumCol1), NumFinalDataPoints(NumCol2)).Select

 Set Workrange = Selection

 NumDataTooFewData = Application.Sum(Workrange)

Else: NumDataTooFewData = 0

End If

NumCol1 = NumCol2 + 1

NumCol2 = NumCol2 + Application.CountIf(NumColumnSort, 34)

If NumCol2 >= NumCol1 Then

 Range(NumFinalDataPoints(NumCol1), NumFinalDataPoints(NumCol2)).Select

 Set Workrange = Selection

 NumDataSumOmitted = NumDataSumOmitted + Application.Sum(Workrange)

End If

NumCol1 = NumCol2 + 1

NumCol2 = NumCol2 + Application.CountIf(NumColumnSort, 36)

If NumCol2 >= NumCol1 Then

 Range(NumFinalDataPoints(NumCol1), NumFinalDataPoints(NumCol2)).Select

 Set Workrange = Selection

 NumDataNewGroupsOmitted = Application.Sum(Workrange)

Else: NumDataNewGroupsOmitted = 0

End If

NumDataNewGroups = NumDataNewGroupsRetained + NumDataNewGroupsOmitted

NumCol1 = NumCol2 + 1

NumCol2 = NumCol2 + Application.CountIf(NumColumnSort, 40)

Macro Code for FPMData.xls Page 59

If NumCol2 >= NumCol1 Then

 Range(NumFinalDataPoints(NumCol1), NumFinalDataPoints(NumCol2)).Select

 Set Workrange = Selection

 NumDataSumOmitted = NumDataSumOmitted + Application.Sum(Workrange)

End If

' Sort the columns in the final data table in order of analyte or group name.

Sheets("DataTable").Select

FinalDataTable.Sort _

 Key1:=DataHeader, Order1:=xlAscending, _

 Header:=xlGuess, _

 Orientation:=xlLeftToRight

After all of the sorting and counting has been completed, the code below checks to make sure that the sum of all of the groups
equals the total. You can also do this by looking at the “Description of Data Set” in the [DataSetSummary] page. If everything
balances, the numbers listed in the two entries named “Total Analytes and Groups” should be the same. The numbers listed
in the two entries named “Total No. of Available Data” should also be the same.

' Check to make sure that the number of initial groups plus the newly created groups

' equals the final number of groups. If not, give error message.

If NumChemInitial + NumNewGroups <> NumChemTooFewData + NumNewGroupsOmitted + _

 NumChemSumOmitted + NumChemOmitted + NetNumChemInitial + NumChemSumRetained + _

 NumNewGroupsRetained Then

 Sheets("DataSetSummary").Select: DataSummary.Select

 Comment = "'Total Analytes and Groups' do not balance. Have all duplicates been

removed?"

 Call ShowMsg

End If

' Check to make sure that the number of initial analytes plus the newly summed analytes

' equals the final number of analytes. If not, give error message.

If NumDataInitial + NumDataNewGroups <> NetNumDataInitial + NumDataSumRetained + _

 NumDataNewGroupsRetained + NumDataTooFewData + NumDataSumOmitted + NumDataOmitted + _

 NumDataBadDQs + NumDataNewGroupsOmitted Then

 Sheets("DataSetSummary").Select: DataSummary.Select

 Comment = "'Total No. of Available Data' do not balance. Have all duplicates been

removed?"

 Call ShowMsg

End If

End Sub

This is the end of FPMData.xls mod04MakeDataTable.

Macro Code for FPMData.xls Page 60

3.2.6 mod05MakeLists

This module contains 6 macros that are used to create some of the lists of analyte and data qualifier names from the raw data
set. Some of the lists include check boxes, which allow you to select specific analytes or DQs that you would like to omit from
the final data table.

GenerateLists calls the list-making routines from a button on the [OmitAnalytes] worksheet.

ChemList checks the data on the [InputData] page and generates a list of analytes on the [OmitAnalytes] worksheet.

DataQualList checks the data on the [InputData] page and generates a list of data qualifiers on the [OmitAnalytes] worksheet.

SumsChemList generates and formats a list of analytes on the [CreateSums] worksheet. This list is used to select the

members of newly-defined groups.

GroupList generates a list of all newly-defined groups and the analytes that make up each group. This list is on the

[DataSetSummary] page.

OmitList generates a list of all analytes and groups that have been screened out. This list is on the [DataSetSummary] page.

The code for these macros is shown below.

Option Private Module

Option Explicit

' The macros in this module are used to generate the lists of

' analytes and data qualifiers on the [OmitAnalytes] page as

' well as the analyte list on the [CreateSums] page.

' **

' GenerateLists() calls the list-making routines from a button

' on the [OmitAnalytes] worksheet.

' **

Sub GenerateLists()

 Call ChemList

 Call DataQualList

' After making lists, always leave [InputData] sorted in ascending

' order by Survey, Station, and Sample.

FullInputTable.Sort _

 Key1:=InputSurvey, Order1:=xlAscending, _

 Key2:=InputStation, Order2:=xlAscending, _

 Key3:=InputSample, Order3:=xlAscending, _

 Header:=xlYes, _

 Orientation:=xlTopToBottom

End Sub

Macro Code for FPMData.xls Page 61

' **

' ChemList() checks the data on the [InputData] page and

' generates a list of analytes on the [OmitAnalytes] worksheet.

' **

Sub ChemList()

Application.ScreenUpdating = False

Call SetRanges

' Clear the existing analytes list, ...

NameScreenedAnalytes.ClearContents

AnalyteNameList.ClearContents

AnalyteNameUnits.ClearContents

' ... uncheck all boxes, and ...

AnalyteOmitState = "#N/A"

AnalyteRetainState = "#N/A"

' ... check the current capacity of the analytes list table.

ListCapacity = Application.CountBlank(AnalyteNameList)

' Sort the InputData by analyte name.

FullInputTable.Sort _

 Key1:=InputName, Order1:=xlAscending, _

 Header:=xlYes, _

 Orientation:=xlTopToBottom

' Scan the analyte names in InputData. Whenever a new name

' is encountered, count it and copy that name to the Analytes List.

NumChemInitial = 0

For i = 1 To Application.CountA(InputName)

 If InputName(i) <> InputName(i - 1) Then

 NumChemInitial = NumChemInitial + 1

' Stop if the number of analytes exceeds the capacity of the Analytes List.

 If NumChemInitial > ListCapacity Then

 MsgBox ("Number of analytes exceeds length of 'Analytes List'")

 AnalyteNameList.Select

 Application.StatusBar = "": End

 End If

 AnalyteNameList(NumChemInitial) = InputName(i)

 AnalyteNameUnits(NumChemInitial) = InputUnits(i)

 AnalyteOmitState(NumChemInitial) = "False"

 AnalyteRetainState(NumChemInitial) = "False"

 End If

Next i

' Move the cursor off the screen and turn on screen updating

 Range("A1").Select

 Application.ScreenUpdating = True

End Sub

Macro Code for FPMData.xls Page 62

' **

' DataQualList() checks the data on the [InputData] page and generates

' a list of data qualifiers on the [OmitAnalytes] worksheet.

' **

Sub DataQualList()

Application.ScreenUpdating = False

Call SetRanges

' Clear the existing list, uncheck all boxes, and

' check the current capacity of the DQ list table.

QualList.ClearContents

QualState = "#N/A"

ListCapacity = Application.CountBlank(QualList)

' Sort the InputData table by analyte name.

FullInputTable.Sort _

 Key1:=InputQual, Order1:=xlAscending, _

 Header:=xlYes, _

 Orientation:=xlTopToBottom

' Scan the data quality symbols in InputData. Whenever a new one

' is encountered, count it and copy that name to the Analytes List.

NumQual = 0

For i = 1 To Application.CountA(InputQual)

 If InputQual(i) <> InputQual(i - 1) Then

 NumQual = NumQual + 1

' Stop if the number of DQs exceeds the capacity of the Data Qualifiers List.

 If NumQual > ListCapacity Then

 MsgBox ("Number of Data Qualifiers exceeds length of 'Data Qualifiers List'")

 QualList.Select

 Application.StatusBar = "": End

 End If

 QualList(NumQual) = InputQual(i)

 QualState(NumQual) = "False"

 End If

Next i

' Move the cursor off the screen and turn on screen updating

 Range("A1").Select

 Application.ScreenUpdating = True

End Sub

Macro Code for FPMData.xls Page 63

' **

' SumsChemList() generates and formats a list of analytes

' on the [CreateSums] worksheet. This list is used to select

' the members of newly-defined groups.

' **

Sub SumsChemList()

 Dim NumMemberList As Integer

 Application.ScreenUpdating = False

 Call SetRanges

 NumChemInitial = Application.CountA(AnalyteNameList)

' Delete all entries from the first three columns of the Analyte List

' table, color the cells light gray, and set the font color to black.

 SumListNums.ClearContents

 SumListNums.Interior.ColorIndex = 15

 SumListNums.Font.ColorIndex = 1

 SumListNames.ClearContents

 SumListNames.Interior.ColorIndex = 15

 SumListNames.Font.ColorIndex = 1

 SumListUnits.ClearContents

 SumListUnits.Interior.ColorIndex = 15

 SumListUnits.Font.ColorIndex = 1

 SumGroupNames.ClearContents

 GroupNameUnits.ClearContents

' Put the name of each analyte into the table. If it has been

' selected for omission, color the cells dark gray and set

' the font color to white. If not, color the cells light yellow

' and set the font color to black.

 For i = 1 To NumChemInitial

 SumListNames(i) = AnalyteNameList(i)

 SumListUnits(i) = AnalyteNameUnits(i)

 AnalyteRetainState(i) = "False"

 If AnalyteOmitState(i) = "True" Then

 SumListNames(i).Interior.ColorIndex = 16

 SumListNames(i).Font.ColorIndex = 2

 SumListNums(i).Interior.ColorIndex = 16

 SumListNums(i).Font.ColorIndex = 2

 SumListUnits(i).Interior.ColorIndex = 16

 SumListUnits(i).Font.ColorIndex = 2

 Else

 SumListNames(i).Interior.ColorIndex = 36

 SumListNames(i).Font.ColorIndex = 1

 SumListNums(i).Interior.ColorIndex = 36

 SumListNums(i).Font.ColorIndex = 1

 SumListUnits(i).Interior.ColorIndex = 36

 SumListUnits(i).Font.ColorIndex = 1

 End If

 Next i

Macro Code for FPMData.xls Page 64

 If RetainGroupList = "True" Then

 NumMemberList = Application.CountA(GroupMemberList)

 m = 0

 For i = 1 To NumMemberList

 If GroupMemberList(i).Interior.ColorIndex = 36 Then

 m = m + 1

 SumGroupNames(m) = GroupMemberList(i)

 Else

 For n = 1 To NumChemInitial

 If SumListNames(n) = GroupMemberList(i) Then

 SumListNums(n) = m

 If GroupMemberRetain(i) = "True" Then AnalyteRetainState(n) = "True"

 GroupNameUnits(m) = SumListUnits(i)

 Exit For

 End If

 Next n

 End If

 Next i

 End If

Range("A1").Select

End Sub

' **

' GroupList() generates a list of all newly-defined groups

' and the analytes that make up each group. This list is

' on the [DataSetSummary] page.

' **

Sub GroupList()

Dim Count As Integer

' Delete all entries from the Members of Defined Groups list,

' make the empty cells light gray, and make sure none of the

' fonts are set to bold.

Count = 0

Sheets("DataSetSummary").Activate

GroupMemberList.Select

 With Selection

 .ClearContents

 .HorizontalAlignment = xlCenter

 .VerticalAlignment = xlBottom

 .Interior.ColorIndex = 15

 .Font.Bold = False

 End With

GroupMemberRetain.ClearContents

For i = 1 To NumNewGroups

Macro Code for FPMData.xls Page 65

' Copy one of the new group names into the list, make that

' cell light yellow and make the font bold.

 Count = Count + 1

 GroupMemberList(Count) = SumGroupNames(i)

 GroupMemberList(Count).Interior.ColorIndex = 36

 GroupMemberList(Count).Font.Bold = True

' Copy the names of all the members of the previously listed

' group into the list below the group name.

 For j = 1 To NumChemInitial

 If SumListNums(j) = i Then

 Count = Count + 1

 GroupMemberList(Count) = SumListNames(j)

 If AnalyteRetainState(j) = "True" Then GroupMemberRetain(Count) = "True"

 End If

 Next j

Next i

Range("A1").Select

End Sub

' **

' OmitList() generates a list of all analytes and groups that have

' been screened out. This list is on the [DataSetSummary] page.

' **

Sub OmitList()

Dim OmitFirst As Integer, OmitLast As Integer

' The analytes in the Data Table are listed such that all of the saved

' ones come first (i.e, NetNumChemInitial, NumChemSumRetained, and

' NumNewGroupsRetained) followed by the omitted ones. Therefore, the

' first omitted analyte is the number of saved analytes + 1.

OmitFirst = NetNumChemInitial + NumChemSumRetained + NumNewGroupsRetained + 1

OmitLast = NumChemInitial + NumNewGroups

j = 1

For i = OmitFirst To OmitLast

 NameScreenedAnalytes(j) = RawDataHeader(i)

 j = j + 1

Next i

End Sub

This is the end of FPMData.xls mod05MakeLists.

Macro Code for FPMData.xls Page 66

3.2.7 mod06FormatData

This module contains 16 macros, most of which are used to delete data from tables or format data in tables. Many of these
macros are simply to make the final tables easier to read.

Auto_Open sets up the appearance of the workbook upon opening.

SetUpScreen modifies the default screen appearance. It's called from the Auto_Open procedure.

StripBlanks removes leading and trailing blanks from the text entries in the Initial Analytical Data table. In trial runs, some

data were found to contain unexpected blanks, which caused the program to treat some equivalent entries as different entries
(i.e., "SampleName " appears to differ from "SampleName").

CenterText centers selected text and adjusts columns to appropriate widths.

ClearAllTables deletes entries from all tables except [InputData]. It‟s called from a button on the [OmitAnalytes] page.

ClearRawAndDataTables deletes all entries from the [AnalyteSummary] and [DataTable] worksheets and restores cell

formats where necessary.

ClearSumLists deletes entries from tables on the [CreateSums] worksheet, restores the default color (gray) to the cells, and

resets the font color to black. It‟s called from a button on [CreateSums].

ClearInitialAnalyticalData deletes all of the entries from the Initial Analytical Data Table on the [InputData] worksheet. It's

called from a button on the [InputData] worksheet.

ClearScreenedCodes deletes only the entries from the three columns of screened data codes on [InputData]. It's called from

a button on the [InputData] worksheet.

DataFormat formats the data tables so that the columns are an appropriate width to make them easier to read.

SortInputData sorts the data in the Input Table in order of survey, station, sample, and analyte.

ColorKey shows a userform that explains the colors used in cells on [AnalyteSummary] page.

CodeKey shows a userform that explains the codes in the Screened Data Codes table.

SaveGroup saves group and analyte name information for future use.

RetrieveGroup copies previously-saved group name and analyte information for reuse.

Auto_Close restores original toolbars, menus, etc. It works automatically on closing.

The code for these macros is shown below.

Option Private Module

Option Explicit

' The macros in this module are used to format the worksheets and

' perform basic tasks like deleting all entries in a specified table.

Macro Code for FPMData.xls Page 67

' **

' Auto_Open() sets up the appearance of the workbook upon opening.

' **

Sub Auto_Open()

Application.ScreenUpdating = False

Application.StatusBar = ""

Call SetRanges

Call SetUpScreen

' This sets each worksheet back to a standard top-left

' orientation with the cursor hidden off screen and hides

' the worksheet that stores reference information [Names].

For i = 1 To 6

 Sheets(i).Activate

 Application.DisplayCommentIndicator = xlCommentIndicatorOnly

 ActiveWindow.ScrollColumn = 1

 ActiveWindow.ScrollRow = 1

 Range("A1").Select

Next i

Sheets(7).Visible = False

Sheets("InputData").Activate

Application.ScreenUpdating = True

End Sub

' **

' SetUpScreen() modifies the default screen appearance.

' It's called from the Auto_Open procedure.

' **

Sub SetUpScreen()

Dim Bar As Object, BarCount As Integer

 For i = 1 To 7

 Sheets(i).Activate

 ActiveWindow.DisplayHeadings = False

 Next i

' To create more space, hide the Formula Bar and the Comment Indicator

 Application.DisplayCommentIndicator = False

 Application.DisplayFormulaBar = False

' Keep track of what toolbars are open so they can be reopened

' before exiting. Names are stored on the hidden worksheet [Names].

' Then hide the open toolbars to create more space on the screen.

 ToolBarStorage.ClearContents

 BarCount = 0

Macro Code for FPMData.xls Page 68

 For Each Bar In Toolbars

 If Bar.Visible = True Then

 BarCount = BarCount + 1

 ToolBarStorage(BarCount) = Bar.Name

 Bar.Visible = False

 End If

 Next Bar

End Sub

' **

' StripBlanks() removes leading and trailing blanks from the text

' entries in the Initial Analytical Data table. In trial runs,

' some data were found to contain unexpected blanks, which caused

' the program to treat some equivalent entries as different

' entries (i.e., "SampleName " appears to differ from "SampleName").

' **

Sub StripBlanks()

Application.ScreenUpdating = False

Call SetRanges

NumDataInitial = Application.CountA(InputName)

Application.StatusBar = "Removing Leading and Trailing Blanks from Data Set"

For i = 1 To NumDataInitial

 InputSurvey(i) = Trim(InputSurvey(i))

 InputStation(i) = Trim(InputStation(i))

 InputSample(i) = Trim(InputSample(i))

 InputName(i) = Trim(InputName(i))

 InputUnits(i) = Trim(InputUnits(i))

 InputQual(i) = Trim(InputQual(i))

Next i

Application.ScreenUpdating = True

Application.StatusBar = False

MsgBox (" Blanks Have Been Removed ")

End Sub

' **

' CenterText() centers selected text and adjusts columns

' to appropriate widths.

' **

Sub CenterText()

With Selection

 .HorizontalAlignment = xlCenter

 .Columns.AutoFit

End With

Range("A1").Select

End Sub

Macro Code for FPMData.xls Page 69

' **

' ClearAllTables() deletes entries from all tables except

' [InputData]. Called from a button on [OmitAnalytes].

' **

Sub ClearAllTables()

Call SetRanges

Application.ScreenUpdating = False

' Delete entries from Analyte List and Qualifier List on

' [OmitAnalytes] and restore all checkboxes to n/a

' (neither checked or unchecked). Also delete entries in

' the ScreenedOut table and Duplicate Samples table on

' the [InputData] page and the lists on [DataSetSummary] page.

AnalyteNameList.ClearContents

AnalyteNameUnits.ClearContents

AnalyteOmitState = "#N/A"

QualList.ClearContents

QualState = "#N/A"

NameScreenedAnalytes.ClearContents

DataSummary.ClearContents

ScreenedOut.ClearContents

DupeTable.ClearContents

If RetainGroupList = "False" Then

 GroupMemberList.ClearContents

 GroupMemberList.Interior.ColorIndex = 15

End If

Call ClearRawAndDataTables

Call ClearSumLists

Range("A1").Select

Application.ScreenUpdating = True

End Sub

' **

' ClearRawAndDataTables() deletes all entries from the

' [AnalyteSummary] and [DataTable] worksheets and restores

' cell formats where necessary.

' **

Sub ClearRawAndDataTables()

' Delete data and restore the format of Raw Data Table

RawDataTable.ClearContents

RawDataTable.Interior.ColorIndex = xlNone

RawDataHeader.ClearContents

RawDataHeader.Interior.ColorIndex = 15

RawDataHeader.Font.ColorIndex = 1

RawDataHeader.Interior.Pattern = xlSolid

RawDataUnits.ClearContents

RawIDTable.ClearContents

NumColumnSort.ClearContents

Macro Code for FPMData.xls Page 70

' Delete data and restore the format of Summary Table

FullSummaryTable.ClearContents

SummaryHeader.Interior.ColorIndex = 15

SummaryHeader.Font.ColorIndex = 1

SummaryHeader.Interior.Pattern = xlSolid

' Delete data and restore the format of Data Table

DataHeader.ClearContents

DataTable.ClearContents

DataUnits.ClearContents

IDTable.ClearContents

End Sub

' **

' ClearSumLists() deletes entries from tables on the [CreateSums]

' worksheet, restores the default color (gray) to the cells, and

' resets the font color to black. Called from button on [CreateSums].

' **

Sub ClearSumLists()

Application.ScreenUpdating = False

Call SetRanges

SumGroupNames.ClearContents

SumGroupNames.Interior.ColorIndex = 15

SumGroupNames.Font.ColorIndex = 1

SumListNames.ClearContents

SumListNames.Interior.ColorIndex = 15

SumListNames.Font.ColorIndex = 1

SumListNums.ClearContents

SumListNums.Interior.ColorIndex = 15

SumListNums.Font.ColorIndex = 1

SumListUnits.ClearContents

SumListUnits.Interior.ColorIndex = 15

SumListUnits.Font.ColorIndex = 1

AnalyteRetainState = "#N/A"

GroupNameUnits.ClearContents

Range("A1").Select

Application.ScreenUpdating = True

End Sub

Macro Code for FPMData.xls Page 71

' **

' ClearInitialAnalyticalData() deletes all of the entries from

' the Initial Analytical Data Table on the [InputData] worksheet.

' It's called from the button on the [InputData] worksheet.

' **

Sub ClearInitialAnalyticalData()

Dim InputTable As Range

Dim Msg As String, Title As String

Dim Response As Integer

Set InputTable = Range("InputTable")

' Make sure the user really wants to delete all of the input data

Msg = "Are you sure you want to delete ALL of the data from the Initial Analytical Data

Table?"

Title = "FPM Data Module: Input Data Screen"

Response = MsgBox(Msg, vbYesNo + vbDefaultButton2, Title)

If Response = vbYes Then InputTable.ClearContents

End Sub

' **

' ClearScreenedCodes() deletes only the entries from the

' three columns of screened data codes on [InputData].

' It's called from the button on the [InputData] worksheet.

' **

Sub ClearScreenedCodes()

Range("ScreenedOut").ClearContents

End Sub

' **

' DataFormat() formats the data tables so that the columns

' are an appropriate width to make them easier to read.

' **

Sub DataFormat()

' Leave [InputData] sorted in ascending order by

' Survey, Station, and Sample.

FullInputTable.Sort _

 Key1:=InputSurvey, Order1:=xlAscending, _

 Key2:=InputStation, Order2:=xlAscending, _

 Key3:=InputSample, Order3:=xlAscending, _

 Header:=xlYes, _

 Orientation:=xlTopToBottom

Macro Code for FPMData.xls Page 72

' Center the text in the [InputTable] worksheet.

Sheets("InputData").Select

 Range("InputHeader", "InputTable").Select

 Call CenterText

' Center the text in the [AnalyteSummary] worksheet.

Sheets("AnalyteSummary").Select

 FullRawDataTable.Select

 Call CenterText

 RawIDTable.ColumnWidth = 12

 For i = 1 To NumChemInitial + NumNewGroups

 SummaryHeader(i).Select

 With Selection

 If .ColumnWidth < 10 Then .ColumnWidth = 10

 End With

 Next i

Sheets("DataTable").Select

 FullDataTable.Select

 Call CenterText

 IDTable.ColumnWidth = 12

 For i = 1 To NetNumChemInitial + NumChemSumRetained + NumNewGroups

 DataHeader(i).Select

 With Selection

 If .ColumnWidth < 10 Then .ColumnWidth = 10

 End With

 Next i

For i = 5 To 1 Step -1

 Sheets(i).Select

 Range("A1").Select

Next i

End Sub

' **

' SortInputData() sorts the data in the Input Table

' in order of survey, station, sample, and analyte.

' **

Sub SortInputData()

' The sort function can only handle three sort factors at

' a time, so first sort by the fourth one (analyte name)

' and then sort by the first three (survey, station, sample).

FullInputTable.Sort _

 Key1:=InputName, Order1:=xlAscending, _

 Header:=xlYes, _

 Orientation:=xlTopToBottom

Macro Code for FPMData.xls Page 73

FullInputTable.Sort _

 Key1:=InputSurvey, Order1:=xlAscending, _

 Key2:=InputStation, Order2:=xlAscending, _

 Key3:=InputSample, Order3:=xlAscending, _

 Header:=xlYes, _

 Orientation:=xlTopToBottom

End Sub

' **

' ColorKey() shows a userform that explains

' the colors used in cells on [AnalyteSummary] page.

' **

Sub ColorKey()

 CellColors.Show

End Sub

' **

' CodeKey() shows a userform that explains

' the codes in the Screened Data Codes table.

' **

Sub CodeKey()

 DataCodes.Show

End Sub

' **

' SaveGroup() saves group and analyte name

' information for future use.

' **

Sub SaveGroup()

Dim ProgramName As String

Dim DestinationGroupName As String, DestinationFileName As String

Dim DestinationGroup As String, DestinationRetain As String

Dim SaveGroupName As Range, SaveFileName As Range

Dim CurrentGroups As Range

Dim i As Integer, ListLength As Integer

Set SaveGroupName = Range("SaveGroupName")

Set SaveFileName = Range("SaveFileName")

Range("A1").Select

Application.ScreenUpdating = False

Call SetRanges

ProgramName = ActiveWorkbook.Name

DestinationFileName = SaveFileName

DestinationGroupName = SaveGroupName

On Error GoTo EndThis

GroupMemberList.Copy

Windows(DestinationFileName).Activate

Sheets("FPMDataGroups").Select

Macro Code for FPMData.xls Page 74

Set CurrentGroups = Range("CurrentGroups")

ListLength = Application.CountA(CurrentGroups) + Application.CountBlank(CurrentGroups)

For i = 1 To ListLength

 If CurrentGroups(i) = "" Then Exit For

 If i = ListLength Then

 MsgBox ("There is no available storage space in the destination file.")

 End

 End If

Next i

DestinationGroupName = "Name" & i

Range(DestinationGroupName) = SaveGroupName

CurrentGroups(i) = SaveGroupName

DestinationGroup = "Group" & i

Range(DestinationGroup).Select

Selection.PasteSpecial Paste:=xlPasteAllExceptBorders, Operation:=xlNone, _

 SkipBlanks:=False, Transpose:=False

Application.CutCopyMode = False

Windows(ProgramName).Activate

GroupMemberRetain.Copy

Windows(DestinationFileName).Activate

Sheets("FPMDataGroups").Select

DestinationRetain = "Retain" & i

Range(DestinationRetain).Select

Selection.PasteSpecial Paste:=xlPasteAllExceptBorders, Operation:=xlNone, _

 SkipBlanks:=False, Transpose:=False

Application.CutCopyMode = False

Range("A1").Select

Windows(ProgramName).Activate

Application.ScreenUpdating = True

Exit Sub

EndThis:

 Application.CutCopyMode = False

 Range("A1").Select

 MsgBox _

 ("An error was encountered in this procedure." & Chr(13) & _

 " Make sure that the target file is open" & Chr(13) & _

 " and in the same folder as this spreadsheet," & Chr(13) & _

 " and/or check the spelling and try again.")

End Sub

Macro Code for FPMData.xls Page 75

' **

' RetrieveGroup() copies previously-saved

' group name and analyte information for reuse.

' **

Sub RetrieveGroup()

Dim ProgramName As String

Dim SourceGroupName As String, SourceFileName As String

Dim SourceGroup As String, SourceRetain As String

Dim RetrieveGroupName As Range, RetrieveFileName As Range

Dim CurrentGroups As Range

Dim i As Integer, ListLength As Integer

Set RetrieveGroupName = Range("RetrieveGroupName")

Set RetrieveFileName = Range("RetrieveFileName")

Range("A1").Select

Application.ScreenUpdating = False

Call SetRanges

If AnalyteNameList(1) = "" Then

 Sheets("OmitAnalytes").Select

 Application.ScreenUpdating = True

 MsgBox ("You must generate data lists on this page before you can proceed.")

 End

End If

ProgramName = ActiveWorkbook.Name

SourceFileName = RetrieveFileName

SourceGroupName = RetrieveGroupName

On Error GoTo EndThis

Windows(SourceFileName).Activate

Sheets("FPMDataGroups").Select

Set CurrentGroups = Range("CurrentGroups")

ListLength = Application.CountA(CurrentGroups) + Application.CountBlank(CurrentGroups)

For i = 1 To ListLength

 If CurrentGroups(i) = SourceGroupName Then Exit For

 If i = ListLength Then

 MsgBox ("The designated group was not found in the source file.")

 Windows(ProgramName).Activate

 End

 End If

Next i

SourceGroup = "Group" & i

Range(SourceGroup).Copy

Windows(ProgramName).Activate

GroupMemberList.Select

Selection.PasteSpecial Paste:=xlPasteAllExceptBorders, Operation:=xlNone, _

 SkipBlanks:=False, Transpose:=False

Application.CutCopyMode = False

Windows(SourceFileName).Activate

Sheets("FPMDataGroups").Select

SourceRetain = "Retain" & i

Range(SourceRetain).Copy

Macro Code for FPMData.xls Page 76

Windows(ProgramName).Activate

GroupMemberRetain.Select

Selection.PasteSpecial Paste:=xlPasteAllExceptBorders, Operation:=xlNone, _

 SkipBlanks:=False, Transpose:=False

Application.CutCopyMode = False

Sheets("CreateSums").Select

RetainGroupList = "True"

Call SumsChemList

RetainGroupList = "False"

Range("A1").Select

Application.ScreenUpdating = True

Exit Sub

EndThis:

Application.CutCopyMode = False

Range("A1").Select

MsgBox _

("An error was encountered in this procedure." & Chr(13) & _

 " Make sure that the source file is open" & Chr(13) & _

 " and in the same folder as this spreadsheet," & Chr(13) & _

 " and/or check the spelling and try again.")

End Sub

' **

' Auto_Close() restores original toolbars, menus, etc.

' Works automatically on closing.

' **

Sub Auto_Close()

 Call SetRanges

 On Error Resume Next

 Application.ScreenUpdating = False

 Sheets("InputData").Select

 For i = 1 To Application.CountA(ToolBarStorage)

 Toolbars(ToolBarStorage(i).Value).Visible = True

 Next i

 Application.DisplayFormulaBar = True

 Application.DisplayCommentIndicator = True

End Sub

This is the end of FPMData.xls mod06FormatData.

This is the end of macro code for the FPMData.xls Worksheet.

Macro Code for FPMDataGroups.xls Page 77

3.3 Macro Code for FPMDataGroups.xls

3.3.1 Summary

FPMDataGroups.xls contains 3 Microsoft Excel® Visual Basic macros that perform specific functions for the
spreadsheet. The macros are stored in one module. The code along with some explanatory text is listed in
Section 3.4.2. No password is required to access the module in the spreadsheet.

3.3.1.1 Macros Activated When Spreadsheet Opens or Closes

MacroName()
Module Containing Macro

Macro Action

Auto_Open()
Module1

When you open the spreadsheet this macro (1) calls the macro SetRanges() in Module1
to initialize all of the variables, and (2) calls the macro Refresh() in Module1 to restore
the appearance of the tables to their default settings.

3.3.1.2 Macros Activated from Buttons on Worksheets

MacroName()
Module Containing Macro

Button that Activates Macro

[Worksheet with Button]

Macro Action

Refresh()
Module1

Refresh Worksheet

[FPMDataGroups]

Deletes group data for any group that has had
its name deleted from the table of “Groups
Currently Stored in this Worksheet.”

3.3.2 Module1

Option Explicit

Option Private Module

Dim CurrentGroups As Range

Dim Group1 As Range, Group2 As Range, Group3 As Range, Group4 As Range

Dim Group5 As Range, Group6 As Range, Group7 As Range, Group8 As Range

Dim Group9 As Range, Group10 As Range, Group11 As Range, Group12 As Range

Dim Group13 As Range, Group14 As Range, Group15 As Range, Group16 As Range

Dim Group17 As Range, Group18 As Range, Group19 As Range, Group20 As Range

Dim Name1 As Range, Name2 As Range, Name3 As Range, Name4 As Range

Dim Name5 As Range, Name6 As Range, Name7 As Range, Name8 As Range

Dim Name9 As Range, Name10 As Range, Name11 As Range, Name12 As Range

Dim Name13 As Range, Name14 As Range, Name15 As Range, Name16 As Range

Dim Name17 As Range, Name18 As Range, Name19 As Range, Name20 As Range

Dim Retain1 As Range, Retain2 As Range, Retain3 As Range, Retain4 As Range

Dim Retain5 As Range, Retain6 As Range, Retain7 As Range, Retain8 As Range

Dim Retain9 As Range, Retain10 As Range, Retain11 As Range, Retain12 As Range

Dim Retain13 As Range, Retain14 As Range, Retain15 As Range, Retain16 As Range

Dim Retain17 As Range, Retain18 As Range, Retain19 As Range, Retain20 As Range

Dim i As Integer, CurrentName As String, CurrentList As String

Macro Code for FPMDataGroups.xls Page 78

' **

' Auto_Open() sets up the appearance of the workbook upon opening.

' **

Sub Auto_Open()

Call Refresh

End Sub

' **

' Refresh() deletes group data for any group that has had its

' name deleted from the table of group names.

' **

Sub Refresh()

Call SetRanges

Application.ScreenUpdating = False

For i = 1 To 20

 If CurrentGroups(i) = "" Then

 CurrentName = "Name" & i

 CurrentList = "Group" & i

 Range(CurrentName).ClearContents

 Range(CurrentList).ClearContents

 Range(CurrentList).Select

 With Selection.Interior

 .ColorIndex = 15

 .Pattern = xlSolid

 .PatternColorIndex = xlAutomatic

 End With

 End If

Next i

Range("A1").Select

Application.ScreenUpdating = True

End Sub

' **

' SetRanges() initializes the variables by setting them equal

' to the values in the previously-declared ranges.

' **

Sub SetRanges()

Set CurrentGroups = Range("CurrentGroups")

Set Group1 = Range("Group1")

Set Group2 = Range("Group2")

Set Group3 = Range("Group3")

Set Group4 = Range("Group4")

Set Group5 = Range("Group5")

Set Group6 = Range("Group6")

Set Group7 = Range("Group7")

Set Group8 = Range("Group8")

Set Group9 = Range("Group9")

Set Group10 = Range("Group10")

Macro Code for FPMDataGroups.xls Page 79

Set Group11 = Range("Group11")

Set Group12 = Range("Group12")

Set Group13 = Range("Group13")

Set Group14 = Range("Group14")

Set Group15 = Range("Group15")

Set Group16 = Range("Group16")

Set Group17 = Range("Group17")

Set Group18 = Range("Group18")

Set Group19 = Range("Group19")

Set Group20 = Range("Group20")

Set Name1 = Range("Name1")

Set Name2 = Range("Name2")

Set Name3 = Range("Name3")

Set Name4 = Range("Name4")

Set Name5 = Range("Name5")

Set Name6 = Range("Name6")

Set Name7 = Range("Name7")

Set Name8 = Range("Name8")

Set Name9 = Range("Name9")

Set Name10 = Range("Name10")

Set Name11 = Range("Name11")

Set Name12 = Range("Name12")

Set Name13 = Range("Name13")

Set Name14 = Range("Name14")

Set Name15 = Range("Name15")

Set Name16 = Range("Name16")

Set Name17 = Range("Name17")

Set Name18 = Range("Name18")

Set Name19 = Range("Name19")

Set Name20 = Range("Name20")

Set Retain1 = Range("Retain1")

Set Retain2 = Range("Retain2")

Set Retain3 = Range("Retain3")

Set Retain4 = Range("Retain4")

Set Retain5 = Range("Retain5")

Set Retain6 = Range("Retain6")

Set Retain7 = Range("Retain7")

Set Retain8 = Range("Retain8")

Set Retain9 = Range("Retain9")

Set Retain10 = Range("Retain10")

Set Retain11 = Range("Retain11")

Set Retain12 = Range("Retain12")

Set Retain13 = Range("Retain13")

Set Retain14 = Range("Retain14")

Set Retain15 = Range("Retain15")

Set Retain16 = Range("Retain16")

Set Retain17 = Range("Retain17")

Set Retain18 = Range("Retain18")

Set Retain19 = Range("Retain19")

Set Retain20 = Range("Retain20")

End Sub

This is the end of macro code for the FPMDataGroups.xls Worksheet.

Macro Code for FPMAnova.xls Page 80

3.4 Macro Code for FPMAnova.xls

3.4.1 Summary

FPMAnova.xls contains 21 Microsoft Excel® Visual Basic macros that perform specific functions for the
spreadsheet. The macros are stored in four modules. The code from each module along with some explanatory
text is listed in Sections 3.4.2 to 3.4.5. A password is required to access the modules in the spreadsheet.

3.4.1.1 Macros Activated When Spreadsheet Opens or Closes

MacroName()
Module Containing Macro

Macro Action

Auto_Open()
mod04FormatPages

When you open the spreadsheet this macro (1) calls the macro SetRanges() in
mod01RunProgram to initialize all of the variables, (2) calls the macro SetUpScreen() in
mod04FormatPages to close unneeded toolbars, and (3) resets all worksheets to the
standard top-left orientation.

Auto_Close()
mod04FormatPages

When you close the spreadsheet this macro restores the toolbars that were closed when
the program opened and resets the formats of the worksheets.

3.4.1.2 Macros Activated from Buttons on Worksheets

MacroName()
Module Containing Macro

Button that Activates Macro

[Worksheet with Button]

Macro Action

RunProgram()
mod01RunProgram

Run ANOVA

[ControlScreen]
See Section 3.4.1.3

ClearAllTables()
mod04FormatPages

Clear All Workbook Tables

[ControlScreen]

Deletes entries from all tables. Calls
ClearFinalTable() in mod04FormatPages to
delete entries from the [FinalDataSet] page.

ClearChem()
mod04FormatPages

Clear ChemData Table

[ControlScreen]

Deletes entries from [ChemData] page.

ClearBio()
mod04FormatPages

Clear BioData Table

[ControlScreen]

Deletes entries from [BioData] page.

ClearSorted()
mod04FormatPages

Clear SortedData Table

[ControlScreen]

Deletes entries from [SortedData] page.

ClearAnova()
mod04FormatPages

Clear AnovaResults Table

[ControlScreen]

Deletes entries from [AnovaResults] page.

DeleteStoredData()
mod01RunProgram

Clear Saved Sorted Data Tables

[ControlScreen]

Deletes data from the Sorted Data Tables.
Renames the worksheets with numbers 01, 02,
etc., and hides the now-empty worksheets.

CopySortedData()
mod01RunProgram

Copy Screened Data

[ControlScreen]

Copies data from [DataTable] page of the
FPMData.xls spreadsheet and pastes it into the
[ChemData] page of the FPMAnova.xls
spreadsheet

Macro Code for FPMAnova.xls Page 81

MacroName()
Module Containing Macro

Button that Activates Macro

[Worksheet with Button]

Macro Action

CompileDataSet()
mod01RunProgram

Compile Data Set

[AnovaResults]

After you select the bio data set you want to
use based on the Anova test results, this
compiles a final data table made up of the
analytical data selected in FPMData.xls and the
bio data selected in FPMAnova.xls. The data
are stored on the [FinalDataSet] page.

3.4.1.3 Macros that Control the Main Function of the Program

When you click on the “Run ANOVA” button, which is located on the [ControlScreen] worksheet, you start the
RunProgram() macro in the mod01RunProgram module. This macro performs some basic functions on its own
and also calls other macros that each carry out part of the overall process. In the table below the RunProgram()
macro code is shown in the left column and the steps that are carried out are explained in the right column.

RunProgram() Macro Code Function

Dim Time As Range, Temp As Single Creates a variable in which to store the overall program run
time (Time) and a variable used to temporarily store the
starting time (Temp).

Application.StatusBar = "(1/3) Checking Input Data"

Puts a message in the status bar (located in the lower left
corner of the spreadsheet screen) to inform the user that the
program is beginning the first of three steps and describes
what will be done in that step.

Range("A1").Select

Set Time = Range("Time")
Time.ClearContents
Temp = Timer

Stores the cursor off-screen (column A and row 1 are
hidden on every worksheet).

Initializes the Time variable and stores it in a cell named
“Time.” Deletes anything currently in that cell and stores the
current time (Timer), which will be used as the program start
time.

Application.ScreenUpdating = False

Call SetRanges

Prevents the program from updating the screen after each
step. This allows the program to run faster.

Calls SetRanges() in mod01RunProgram to initialize the
variables used by the program. (See Section 3.1.3.1 for
more information about SetRanges()).

FullChemTable.Columns.AutoFit
FullBioTable.Columns.AutoFit

Adjusts the sizes of the columns in the ChemTable and the
BioTable.

ProgramName = ActiveWorkbook.Name
NumChem = Application.CountA(ChemHeader)
NumBioDataSets = Application.CountA(BioHeader)
NumSamples = Application.CountA(ChemSample)
NumSheets = Sheets.Count

Evaluates some of the parameters that will be needed in
later procedures:

ProgramName = name of spreadsheet,
NumChem = no. of analytes in the chem table,
NumBioDataSets = no. of sets of biological data,
NumSamples = no. of samples in chem table, and
NumSheets = no. of worksheets in spreadsheet.

Application.StatusBar = "(2/3) Comparing Chem and Bio
Data Sets"

Updates the note in the status bar.

Call CompareData Calls CompareData() in mod01RunProgram, which does the
following:

Macro Code for FPMAnova.xls Page 82

RunProgram() Macro Code Function

(1) Puts ChemData and BioData tables in survey, station,
and sample order.

(2) Trims leading and trailing blanks that might be in the
data.

(3) Sequentially compares survey, station, and sample
names in the ChemData table to the survey, station, and
sample names in the BioData table.

(4) If any mismatches are found, calls
DataProblemMessage(), which displays an error message
and then ends the program.

SaveSortIndicator = UCase(SaveSortIndicator)

If SaveSortIndicator <> "Y" And SaveSortIndicator <> "N"
Then
 SaveSortIndicator.Select
 MsgBox (" 'Save Sorted Data?' must contain Y or N. ")
 End
End If

Makes SaveSortIndicator an uppercase letter.

Checks to see if the save sorted data question has a Y or N
answer. If not, an error message is displayed and the
program is stopped.

AnovaName.ClearContents
AnovaResults.ClearContents
AnovaResultsHeader.ClearContents
SumResultsTable.ClearContents
SumResultsHeader.ClearContents

RetainBio = "#N/A"
RetainChem = "#N/A"

Clears old data from the Anova Results and SumResults
Tables.

Removes all check marks from and shades the row of check
boxes marked “Select one biological data set.” and the
column of check boxes marked “Deselect undesired
analytes.” on the [AnovaResults] page.

For iChem = 1 To NumChem
 AnovaName(iChem) = ChemHeader(iChem)
 RetainChem(iChem) = "TRUE"
Next iChem

Copies the analyte names from the ChemData Table into
the Anova tables.

Sheets("AnovaResults").Select Moves program activity to the [AnovaResults] page.

For iDataSet = 1 To NumBioDataSets

Initiates a series of calculations for each column of bio test
results.

 Application.StatusBar = "(3/3) Sorting Data and
 Calculating ANOVA for Dataset " & iDataSet & "/" &
 NumBioDataSets

Updates the note in the status bar to identify what bio data
set is being evaluated.

 FullSortedTable.ClearContents Clears old data from the [SortedData] page.

 RetainBio(iDataSet) = "FALSE" Removes the shading from the check box above the set of
bio data that will be tested with an analysis of variance.

 Call SortData

Calls SortData() in mod03SortData, which does the
following:

(1) Puts analyte names in every other column at the top of
the data table.

(2) Labels alternate columns in the second row of the data
table as “Hit” and “NoHit” so that there is a pair for each

Macro Code for FPMAnova.xls Page 83

RunProgram() Macro Code Function

analyte.

(3) Examines the data points for each analyte and puts the
hit concentrations and the no-hit concentrations into the
appropriately labeled columns.

(4) Sorts each column of hit and no-hit data from low to
high.

 If SaveSortIndicator = "Y" Then Call SaveSortedData

If you want to save the sets of sorted hit and no-hit data, this
calls SaveSortedData() in mod01RunProgram, which does
the following:

(1) Copies the table of data on the [SortedData] page.

(2) Unhides the next available data storage worksheet.

(3) Names the unhidden worksheet with the name of the bio
data set.

(4) Pastes the data set into the unhidden worksheet.

 Call Anova

Calls Anova() in mod02Anova, which does the following:

(1) Put zeroes in the “Totals by Significance Table.”

(2) Deletes old data from the [AnovaResults] page and
enters the name of the bio data set that will be tested.

(3) Uses the Analysis of Variance routine that is built into
Microsoft Excel to calculate the Anova results for the hit and
no-hit data for each analyte.

(4) Based on the results of the ANOVA, assigns one of the
following codes to each analyte:

0 = No apparent difference in hit and no-hit distributions
0* = Significant differences at p < 0.1
1 = Significant differences at p < 0.05
1* = Significant differences at p < 0.005
1** = Significant differences at p < 0.0005

(5) Totals the number of each significance level for each
analyte.

Next iDataSet Continues with the next bio data set.

Application.ScreenUpdating = False

Prevents the program from updating the screen after each
step. This allows the program to run faster.

If SaveSortIndicator = "Y" Then
 NumStart = NumBioDataSets + 1
Else
 NumStart = 1
End If

For i = NumStart + 7 To NumSheets
 Sheets(i).Visible = False
Next i

Determines where to start hiding the remaining unused data
storage worksheets. If you do not save sorted data you
start with the first worksheet after the 7 regular worksheets.
If you save the sorted data you start with the first worksheet
after the total of the 7 regular and the saved worksheets
(one worksheet is saved for each bio data set).

Hides the unused data storage worksheets.

Macro Code for FPMAnova.xls Page 84

RunProgram() Macro Code Function

Call FormatSortedTable Calls FormatSortedTable() in mod04FormatData, which
does the following:

(1) Merges the pairs of Hit/No-Hit header columns (each
analyte has one column of hit data and one column of no-hit
data) so that the pair of columns has a single header cell
containing the name of the analyte.

(2) Adjusts the columns to appropriate widths to deal with
the widely varying length of the analyte names.

Sheets("AnovaResults").Select

AnovaResultsHeader.Columns.AutoFit

Range("A1").Select

Selects the page that will appear when the program ends.

Adjusts the widths of the columns of Anova results.

Stores the cursor off-screen (column A and row 1 are
hidden on every worksheet).

Application.ScreenUpdating = True

Application.StatusBar = False

Restores screenupdating so changes made during the
running of the program will now show up on screen.

Deletes the message from the status bar.

Time = Timer – Temp

MsgBox (" Calculations Completed ")

Subtracts the initial time (Temp) from the current time
(Timer) to get the program run time.

Puts message on screen to inform the user that the program
has ended.

3.4.2 mod01RunProgram

This module contains 8 macros:

RunProgram controls the overall program by calling the macros that carry out the necessary sorting, testing, and calculating

routines.

SetRanges initializes the variables by setting them equal to some of the relevant previously-declared ranges.

CompareData compares the chem table survey, station, and sample data to the corresponding data in the bio table. If they

are not the same the program stops and an error message is displayed.

DataProblemMessage displays the error message called by CompareData.

SaveSortedData copies data temporarily stored on the [SortedData] page, and puts it onto a separate page after the

[AnovaResults] page.

DeleteStoredData deletes the data saved by the above macro, renames the page, and hides the empty page.

CopySortedData copies the sorted data table from the FPMData spreadsheet and pastes it into this FPMAnova spreadsheet.

CompileDataSet constructs the [FinalDataset] from the bio data set and analytes that are selected on the [AnovaResults]

page.

The code and comments for this module are shown below.

Macro Code for FPMAnova.xls Page 85

' File: FPMAnova.xls

' This is the second of three spreadsheets used for implementing the

' Floating Percentile Method (FPM) developed by Teresa Michelsen of

' Avocet Consulting. The FPM is used to assess sediment toxicity

' and chemical composition data to develop sediment quality guidelines.

' FPMAnova.xls:

' (1) Accepts screened analytical data from FPMData.xls;

' (2) Requires one or more sets of bio data with the same survey,

' station, and sample IDs as the analytical data;

' (3) Sorts the data by analyte data into hit and no-hit groups;

' (4) Stores the sorted hit/no-hit data in another workbook, if desired; and

' (5) Calculates analysis of variance on the hit versus no-hit data.

' This spreadsheet was developed by Michael R. Anderson,

' Oregon Department of Environmental Quality.

' Last edited: July 29, 2008

' Names shown in [Square Brackets] in the comments are names of worksheets.

Option Private Module

Option Explicit

Public AnovaResults As Range, AnovaResultsHeader As Range

Public AnovaF As Range, AnovaFcrit As Range

Public AnovaName As Range, AnovaTable As Range

Public BioCheckBoxes As Range, BioIDTable As Range, BioIDHeader As Range

Public BioSample As Range, BioStation As Range, BioSurvey As Range

Public BioTable As Range, BioHeader As Range, ChemCheckBoxes As Range

Public ChemHeader As Range, ChemIDHeader As Range, ChemIDTable As Range

Public ChemSample As Range, ChemStation As Range, ChemSurvey As Range

Public ChemTable As Range, ChemTableNoHeader As Range, ChemUnits As Range

Public FinalBioName As Range, FinalDataHeader As Range, FinalDataTable As Range

Public FinalHitNoHit As Range, FinalIDTable As Range

Public FullChemTable As Range, FullBioTable As Range, FullFinalDataTable As Range

Public FullSortedTable As Range, NumData As Range

Public Pvalue As Range, RetainBio As Range, RetainChem As Range

Public SaveSortIndicator As Range, SortedHeaderHitNoHit As Range

Public SortedHeaderName As Range, SortedTable As Range

Public SumResultsHeader As Range, SumResultsTable As Range

Public ToolBarStorage As Range, VersionName As Range

Public i As Integer, iChem As Integer, iCount As Integer

Public iColumn As Integer, iDataSet As Integer, iSample As Integer

Public NumChem As Integer, NumBioDataSets As Integer

Public NumHit As Integer, NumIndet As Integer, NumNoHit

Public NumPage As Integer, NumSamples As Integer, NumStart As Integer

Public NumSheets As Integer, NumStations As Integer

Public AnovaRange As Object, Workrange As Object

Public ProgramName As String

Public ColWid As Single

Macro Code for FPMAnova.xls Page 86

' **

' RunProgram() controls the overall program by calling the macros

' that carry out the necessary sorting, testing, and calcuating routines.

' **

Sub RunProgram()

Dim Time As Range, Temp As Single

Application.StatusBar = "(1/3) Checking Input Data"

Range("A1").Select

Set Time = Range("Time")

Time.ClearContents

Temp = Timer

Application.ScreenUpdating = False

Call SetRanges

FullChemTable.Columns.AutoFit

FullBioTable.Columns.AutoFit

' Collect basic information needed in other macros.

ProgramName = ActiveWorkbook.Name

NumChem = Application.CountA(ChemHeader)

NumBioDataSets = Application.CountA(BioHeader)

NumSamples = Application.CountA(ChemSample)

NumSheets = Sheets.Count

Application.StatusBar = "(2/3) Comparing Chem and Bio Data Sets"

Call CompareData

' Make sure that the save sorted data question has a Y or N answer.

SaveSortIndicator = UCase(SaveSortIndicator)

If SaveSortIndicator <> "Y" And SaveSortIndicator <> "N" Then

 SaveSortIndicator.Select

 MsgBox (" 'Save Sorted Data?' must contain Y or N. ")

 End

End If

' Clear unneeded data remaining from previous tests

AnovaName.ClearContents

AnovaResults.ClearContents

AnovaResultsHeader.ClearContents

SumResultsTable.ClearContents

SumResultsHeader.ClearContents

RetainBio = "#N/A"

RetainChem = "#N/A"

' Copy analyte names from the ChemData Table into the Anova tables

For iChem = 1 To NumChem

 AnovaName(iChem) = ChemHeader(iChem)

 RetainChem(iChem) = "TRUE"

Next iChem

Macro Code for FPMAnova.xls Page 87

' Carry out the calculations for each column of bio test results

Sheets("AnovaResults").Select

For iDataSet = 1 To NumBioDataSets

 Application.StatusBar = "(3/3) Sorting Data and Calculating ANOVA for Dataset " &

iDataSet & "/" & NumBioDataSets

 FullSortedTable.ClearContents

 RetainBio(iDataSet) = "FALSE"

 Call SortData

 If SaveSortIndicator = "Y" Then Call SaveSortedData

 Call Anova

Next iDataSet

Application.ScreenUpdating = False

' Hide unused sorted data sheets

If SaveSortIndicator = "Y" Then

 NumStart = NumBioDataSets + 1

Else

 NumStart = 1

End If

For i = NumStart + 7 To NumSheets

 Sheets(i).Visible = False

Next i

Call FormatSortedTable

Sheets("AnovaResults").Select

AnovaResultsHeader.Columns.AutoFit

Range("A1").Select

Application.ScreenUpdating = True

Application.StatusBar = False

Time = Timer - Temp

MsgBox (" Calculations Completed ")

End Sub

' **

' SetRanges() initiates the variables by associating

' them with the previously-declared ranges.

' **

Sub SetRanges()

Set BioCheckBoxes = Range("BioCheckBoxes")

Set FinalBioName = Range("FinalBioName")

Set FinalDataHeader = Range("FinalDataHeader")

Set FinalDataTable = Range("FinalDataTable")

Set FinalHitNoHit = Range("FinalHitNoHit")

Set FinalIDTable = Range("FinalIDTable")

Set AnovaResults = Range("AnovaResults")

Set AnovaResultsHeader = Range("AnovaResultsHeader")

Set AnovaF = Range("AnovaF")

Set AnovaFcrit = Range("AnovaFcrit")

Set AnovaName = Range("AnovaName")

Macro Code for FPMAnova.xls Page 88

Set AnovaTable = Range("AnovaTable")

Set BioIDHeader = Range("BioIDHeader")

Set BioIDTable = Range("BioIDTable")

Set BioSample = Range("BioSample")

Set BioStation = Range("BioStation")

Set BioSurvey = Range("BioSurvey")

Set BioHeader = Range("BioHeader")

Set BioTable = Range("BioTable")

Set ChemCheckBoxes = Range("ChemCheckBoxes")

Set ChemHeader = Range("ChemHeader")

Set ChemIDHeader = Range("ChemIDHeader")

Set ChemIDTable = Range("ChemIDTable")

Set ChemSample = Range("ChemSample")

Set ChemStation = Range("ChemStation")

Set ChemSurvey = Range("ChemSurvey")

Set ChemTable = Range("ChemTable")

Set ChemTableNoHeader = Range("ChemTableNoHeader")

Set ChemUnits = Range("ChemUnits")

Set FullChemTable = Range("FullChemTable")

Set FullBioTable = Range("FullBioTable")

Set FullFinalDataTable = Range("FullFinalDataTable")

Set FullSortedTable = Range("FullSortedTable")

Set NumData = Range("NumData")

Set Pvalue = Range("Pvalue")

Set RetainBio = Range("RetainBio")

Set RetainChem = Range("RetainChem")

Set SaveSortIndicator = Range("SaveSortIndicator")

Set SortedHeaderHitNoHit = Range("SortedHeaderHitNoHit")

Set SortedHeaderName = Range("SortedHeaderName")

Set SortedTable = Range("SortedTable")

Set SumResultsHeader = Range("SumResultsHeader")

Set SumResultsTable = Range("SumResultsTable")

Set ToolBarStorage = Range("ToolBarStorage")

Set VersionName = Range("VersionName")

End Sub

' **

' CompareData() compares the chem table survey, station, and

' sample data to the corresponding data in the bio table.

' If they are not the same the program stops and an error

' message is displayed.

' **

Sub CompareData()

' Make sure that the data in the ChemData and BioData tables are

' listed in the same order so comparisons can be made. This sorts each

' table into ascending order by survey, station, and sample.

FullBioTable.Sort _

 Key1:=BioSurvey, Order1:=xlAscending, _

 Key2:=BioStation, Order1:=xlAscending, _

 Key3:=BioSample, Order1:=xlAscending, _

 Header:=xlYes, _

 Orientation:=xlTopToBottom

ChemTableNoHeader.Sort _

 Key1:=ChemTableNoHeader(1, 1), Order1:=xlAscending, _

 Key2:=ChemTableNoHeader(1, 2), Order1:=xlAscending, _

 Key3:=ChemTableNoHeader(1, 3), Order1:=xlAscending, _

 Header:=xlNo, _

Macro Code for FPMAnova.xls Page 89

 Orientation:=xlTopToBottom

For i = 1 To NumSamples

' In one of my early tests I kept getting error messages even though

' I thought the survey, station, and sample data were clearly the same.

' It turned out that the bio data all had trailing blank spaces, which

' made them unequal to the chem entries. The Trim function removes

' leading and trailing blank spaces to avoid this problem.

 BioSurvey(i) = Trim(BioSurvey(i))

 BioStation(i) = Trim(BioStation(i))

 BioSample(i) = Trim(BioSample(i))

 ChemSurvey(i) = Trim(ChemSurvey(i))

 ChemStation(i) = Trim(ChemStation(i))

 ChemSample(i) = Trim(ChemSample(i))

 If BioSurvey(i) <> ChemSurvey(i) Then Call DataProblemMessage

 If BioStation(i) <> ChemStation(i) Then Call DataProblemMessage

 If BioSample(i) <> ChemSample(i) Then Call DataProblemMessage

Next i

End Sub

' **

' DataProblemMessage() displays the error message called by CompareData().

' **

Sub DataProblemMessage()

Dim Msg, Style, Title, Response

Msg = "The BioData survey, station, and sample identifiers do not match all of the" & Chr(13)

& _

" corresponding ChemData survey, station, and sample identifiers." & Chr(13) & _

" Do you want to continue with the ANOVA calculations?"

Style = vbYesNoCancel

Title = "Possible Data Mismatch"

Response = MsgBox(Msg, Style, Title)

If Response <> vbYes Then End

End Sub

' **

' SaveSortedData() copies data temporarily stored on the [SortedData]

' page, and puts it onto a separate page after the [AnovaResults] page.

' **

Sub SaveSortedData()

 Sheets("SortedData").Select

 Range(FullSortedTable(1, 1), FullSortedTable(NumSamples + 2, 2 * NumChem)).Select

 Selection.Copy

 Range("A1").Select

 Sheets(7 + iDataSet).Visible = True

 Sheets(7 + iDataSet).Select

 Sheets(7 + iDataSet).Name = BioHeader(iDataSet)

 Range("I3") = BioHeader(iDataSet)

 Range(Cells(5, 3), Cells(4 + NumSamples + 2, 2 + 2 * NumChem)).Select

Macro Code for FPMAnova.xls Page 90

 ActiveSheet.Paste

 Application.CutCopyMode = False

 Range("A1").Select

End Sub

' **

' DeleteStoredData() deletes the data saved by the above

' macro, renames the page, and hides the empty page.

' **

Sub DeleteStoredData()

Application.ScreenUpdating = False

Call SetRanges

NumChem = Application.CountA(ChemHeader)

NumBioDataSets = Application.CountA(BioHeader)

NumSamples = Application.CountA(ChemSample)

NumSheets = Sheets.Count

For iDataSet = 1 To NumSheets - 7

 If Sheets(7 + iDataSet).Visible = False Then Sheets(7 + iDataSet).Visible = True

 Sheets(7 + iDataSet).Select

 Sheets(7 + iDataSet).Name = iDataSet

 Range("I3") = ""

 Range(Cells(5, 3), Cells(5 + NumSamples + 2, 3 + 2 * NumChem)).Select

 Selection.ClearContents

 Range("A1").Select

 Sheets(7 + iDataSet).Visible = False

Next iDataSet

If iDataSet < (NumSheets - 7) Then

 For i = iDataSet To (NumSheets - 7)

 Sheets(7 + i).Visible = False

 Next i

End If

Sheets("ControlScreen").Select

Application.ScreenUpdating = True

End Sub

' **

' CopySortedData() copies the sorted data table from the FPMData

' spreadsheet and pastes it into this FPMAnova spreadsheet.

' **

Sub CopySortedData()

Dim SourceName As String, DestinationName As String

Dim DefaultSourceName As Range

Set DefaultSourceName = Range("DefaultSourceName")

Range("A1").Select

Application.ScreenUpdating = False

Call SetRanges

ProgramName = ActiveWorkbook.Name

Macro Code for FPMAnova.xls Page 91

On Error GoTo EndThis

SourceName = DefaultSourceName

DestinationName = ProgramName

Windows(SourceName).Activate

Range("FullDataTable").Copy

Windows(DestinationName).Activate

Sheets("ChemData").Select

Range("FullChemTable").PasteSpecial Paste:=xlPasteValues

Application.CutCopyMode = False

Range("A1").Select

FullChemTable.Columns.AutoFit

Application.ScreenUpdating = True

Exit Sub

EndThis:

MsgBox (" The name you entered did not work." & Chr(13) & _

 " Make sure that the source file is open" & Chr(13) & _

 "and in the same folder as this spreadsheet," & Chr(13) & _

 " or check the spelling and try again.")

End Sub

' **

' CompileDataSet() constructs the [FinalDataset] from the bio data

' set and analytes that are selected on the [AnovaResults] page.

' **

Sub CompileDataSet()

Application.ScreenUpdating = False

Call SetRanges

NumChem = Application.CountA(ChemHeader)

NumBioDataSets = Application.CountA(BioHeader)

NumSamples = Application.CountA(ChemSample)

Call ClearFinalTable

' Check to make sure that only on bio data set has been selected

' and that at least one analyte has been selected.

If Application.CountIf(RetainBio, "TRUE") = 0 Then

 Sheets("AnovaResults").Select

 BioCheckBoxes.Select

 Application.ScreenUpdating = True

 MsgBox ("One biological data set must be selected.")

 End

ElseIf Application.CountIf(RetainBio, "TRUE") > 1 Then

 Sheets("AnovaResults").Select

 BioCheckBoxes.Select

 Application.ScreenUpdating = True

 MsgBox ("Only one biological data set can be selected.")

 End

ElseIf Application.CountIf(RetainChem, "TRUE") = 0 Then

 Sheets("AnovaResults").Select

 ChemCheckBoxes.Select

Macro Code for FPMAnova.xls Page 92

 Application.ScreenUpdating = True

 MsgBox ("At least one analyte must be selected.")

 End

End If

' Examine each column of bio data on the [AnovaResults] worksheet.

' When the one column with a checked box is found (="True"), copy

' the corresponding column from the [BioData] worksheet and paste it

' into the Hit/No-Hit column of the table on [FinalDataSet]. Copy the

' Survey, Station, and Sample information from [BioData] and paste it

' into the table on [FinalDataSet] as well.

For iDataSet = 1 To NumBioDataSets

 If RetainBio(iDataSet) = "True" Then

 FinalBioName = BioHeader(iDataSet)

 BioIDTable.Copy

 FinalIDTable.PasteSpecial Paste:=xlPasteValues

 Application.CutCopyMode = False

 Range(BioTable(1, iDataSet), BioTable(NumSamples, iDataSet)).Copy

 Range(FinalHitNoHit(1), FinalHitNoHit(NumSamples)).PasteSpecial Paste:=xlPasteValues

 Application.CutCopyMode = False

 Exit For

 End If

Next iDataSet

' Examine each analyte name in the list on the [AnovaResults] worksheet.

' When one with a checked box is found (="True"), copy the relevant

' column from the [ChemData] worksheet and paste it into the first available

' column of analytes on the [FinalDataSet] worksheet. Continue until all

' checked analytes have been copied.

iCount = 0

For iChem = 1 To NumChem

 If RetainChem(iChem) = "True" Then

 iCount = iCount + 1

 Range(FullChemTable(1, 3 + iChem), FullChemTable(2 + NumSamples, 3 + iChem)).Copy

 Range(FinalDataTable(1, iCount), FinalDataTable(2 + NumSamples, iCount)).PasteSpecial

Paste:=xlPasteValues

 Application.CutCopyMode = False

 End If

Next iChem

Sheets("FinalDataSet").Select

FinalDataTable.Select

Call CenterText

For i = 1 To 100

 If FinalDataHeader(i).ColumnWidth < 10 Then FinalDataHeader(i).ColumnWidth = 10

Next i

Range("A1").Select

Application.ScreenUpdating = True

End Sub

This is the end of FPMAnova.xls mod01RunProgram.

Macro Code for FPMAnova.xls Page 93

3.4.3 mod02Anova

This module contains only 1 macro, Anova. The code and comments are shown below.

Option Private Module

Option Explicit

' **

' Anova() performs an analysis of variance on the Hit and No-Hit data

' for each analyte and returns one of the following results:

'

' 0 = This analyte showed no apparent difference in its hit and

' no-hit distributions for this hit/no-hit definition.

' 0* = This analyte showed significant differences in its hit and

' no-hit distributions for this hit/no-hit definition (p < 0.1).

' 1 = Same as above except that p < 0.05

' 1* = Same as above except that p < 0.005

' 1** = Same as above except that p < 0.0005

' **

Sub Anova()

' Put zeroes in the 'Totals by Significance Table' before starting to count

 For i = 1 To 5

 SumResultsTable(i, iDataSet) = 0

 Next i

' For each analyte, perform ANOVA on the hit vs. nohit data and

' note the significance level group to which the result belongs.

 Application.ScreenUpdating = True

 For iChem = 1 To NumChem

 AnovaTable.ClearContents

 AnovaResultsHeader(iDataSet) = BioHeader(iDataSet)

 SumResultsHeader(iDataSet) = BioHeader(iDataSet)

 Set AnovaRange = Range(SortedHeaderHitNoHit(2 * iChem - 1),

SortedTable(NumData(iDataSet), 2 * iChem))

The command below initiates the Analysis of Variance routine that is built into Microsoft Excel and uses it to calculate the
Anova results for the hit and no-hit data.

 Application.Run "ATPVBAEN.XLA!Anova1", AnovaRange, AnovaTable, "C", True, 0.1

 If AnovaF > AnovaFcrit Then

 If Pvalue < 0.0005 Then

 AnovaResults(iChem, iDataSet) = "1**"

 SumResultsTable(1, iDataSet) = SumResultsTable(1, iDataSet) + 1

 ElseIf Pvalue < 0.005 Then

 AnovaResults(iChem, iDataSet) = "1*"

 SumResultsTable(2, iDataSet) = SumResultsTable(2, iDataSet) + 1

 ElseIf Pvalue < 0.05 Then

 AnovaResults(iChem, iDataSet) = "1"

 SumResultsTable(3, iDataSet) = SumResultsTable(3, iDataSet) + 1

 ElseIf Pvalue < 0.1 Then

 AnovaResults(iChem, iDataSet) = "0*"

Macro Code for FPMAnova.xls Page 94

 SumResultsTable(4, iDataSet) = SumResultsTable(4, iDataSet) + 1

 End If

 Else

 AnovaResults(iChem, iDataSet) = "0"

 SumResultsTable(5, iDataSet) = SumResultsTable(5, iDataSet) + 1

 End If

 Next iChem

 Application.ScreenUpdating = False

End Sub

This is the end of FPMAnova.xls mod02Anova.

Macro Code for FPMAnova.xls Page 95

3.4.4 mod03Sort Data

This module contains only 1 macro, SortData. The code and comments are shown below.

Option Private Module

Option Explicit

' **

' SortData() uses the information from [BioData] to create a new table

' on the [SortedData] worksheet in which the analytical data are separated

' into Hit and No-Hit groups for each analyte.

' **

Sub SortData()

For iChem = 1 To NumChem 'This is the column number

 SortedHeaderName(2 * iChem - 1) = ChemHeader(iChem)

 SortedHeaderHitNoHit(2 * iChem - 1) = "Hit"

 SortedHeaderHitNoHit(2 * iChem) = "NoHit"

 For iSample = 1 To NumSamples 'This is the row number

' If there is an entry in the ChemTable, determine if it is a Hit or NoHit

' and copy the entry into the appropriate column in the SortedTable

 If ChemTable(iSample, iChem) <> "" Then

 If BioTable(iSample, iDataSet) = 1 Then SortedTable(iSample, 2 * iChem - 1) =

ChemTable(iSample, iChem)

 If BioTable(iSample, iDataSet) = 0 Then SortedTable(iSample, 2 * iChem) =

ChemTable(iSample, iChem)

 End If

 Next iSample

Next iChem

' Sort each column of chem data from low to high.

For iColumn = 1 To 2 * NumChem

 Range(SortedTable(1, iColumn), SortedTable(NumSamples, iColumn)).Sort _

 Key1:=SortedTable(1, iColumn), Order1:=xlAscending, _

 Header:=xlNo, _

 Orientation:=xlTopToBottom

Next iColumn

End Sub

This is the end of FPMAnova.xls mod03Sort Data.

Macro Code for FPMAnova.xls Page 96

3.4.5 mod04Format Pages

This module contains 11 macros, most of which are used to delete data from tables or format data in tables.

Auto_Open sets up the appearance of the workbook upon opening.

SetUpScreen closes toolbars and sets up the worksheets in preparation for using the program. It's called from the

Auto_Open procedure.

CenterText centers selected text and adjusts columns to appropriate widths.

FormatSortedTable merges pairs of Hit/No-Hit header columns and adjusts them to appropriate widths.

ClearAllTables deletes entries from all tables. It‟s called from a button on the [ControlScreen] page.

ClearChem deletes entries from the [ChemData] page. It's called from a button on the [ControlScreen] page.

ClearBio deletes entries from the [BioData] page. It's called from a button on the [ControlScreen] page.

ClearSorted deletes entries from the [SortedData] page. It's called from a button on the [ControlScreen] page.

ClearAnova deletes entries from the [AnovaResults] page. It's called from a button on the [ControlScreen] page.

ClearFinalTable deletes entries from the [FinalDataSet] page. It's called from the ClearAllTables macro.

Auto_Close restores original toolbars, menus, etc. It works automatically on closing.

The code for these macros is shown below.

Option Private Module

Option Explicit

' **

' Auto_Open() sets up the appearance of the workbook upon opening.

' **

Sub Auto_Open()

Application.ScreenUpdating = False

Application.StatusBar = False

Call SetRanges

Call SetUpScreen

' If the program is revised change the version date below.

VersionName = "FPMAnova.xls Version 072908"

Sheets("ControlScreen").Activate

Application.ScreenUpdating = True

End Sub

Macro Code for FPMAnova.xls Page 97

' **

' SetUpScreen() closes toolbars and sets up the worksheets

' in preparation for using the program. It's called from

' the Auto_Open procedure.

' **

Sub SetUpScreen()

Dim Bar As Object, BarCount As Integer

' This sets each worksheet back to a standard top-left

' orientation with the cursor hidden off screen and hides

' the sheet that's used to store reference information.

 For i = 1 To 7

 Sheets(i).Activate

 ActiveWindow.DisplayHeadings = False

 Application.DisplayCommentIndicator = xlCommentIndicatorOnly

 ActiveWindow.ScrollColumn = 1

 ActiveWindow.ScrollRow = 1

 Range("A1").Select

 Next i

 Sheets(7).Visible = False

' To create more space, hide the Formula Bar and the Comment Indicator

 Application.DisplayCommentIndicator = False

 Application.DisplayFormulaBar = False

' Keep track of what toolbars are open so they can be reopened

' before exiting. Names are stored on the hidden worksheet [Names].

' Then hide the open toolbars to create more space on the screen.

 ToolBarStorage.ClearContents

 BarCount = 0

 For Each Bar In Toolbars

 If Bar.Visible = True Then

 BarCount = BarCount + 1

 ToolBarStorage(BarCount) = Bar.Name

 Bar.Visible = False

 End If

 Next Bar

End Sub

' **

' CenterText() centers selected text and adjusts columns

' to appropriate widths.

' **

Sub CenterText()

With Selection

 .HorizontalAlignment = xlCenter

 .Columns.AutoFit

End With

Range("A1").Select

End Sub

Macro Code for FPMAnova.xls Page 98

' **

' FormatSortedTable() merges pairs of Hit/No-Hit header

' columns and adjusts them to appropriate widths.

' **

Sub FormatSortedTable()

Sheets("SortedData").Activate

SortedHeaderName.Select

With Selection

 .MergeCells = False

 .HorizontalAlignment = xlLeft

 .Columns.AutoFit

End With

For i = 1 To 200 Step 2

ColWid = SortedHeaderName(i).ColumnWidth

If ColWid < 20 Then ColWid = 20

SortedHeaderName(i).ColumnWidth = ColWid / 2

SortedHeaderName(i + 1).ColumnWidth = ColWid / 2

Range(SortedHeaderName(i), SortedHeaderName(i + 1)).Select

With Selection

 .HorizontalAlignment = xlCenter

 .MergeCells = True

End With

Next i

Range("A1").Select

End Sub

' **

' ClearAllTables() deletes entries from all tables.

' It's called from a button on the [ControlScreen] page.

' **

Sub ClearAllTables()

Dim Msg, Style, Title, Response

Msg = " Are you sure that you want to clear ALL of the tables? "

Style = vbYesNoCancel

Title = "Clear All Tables"

Response = MsgBox(Msg, Style, Title)

If Response = vbYes Then

 Call ClearChem

 Call ClearBio

 Call ClearSorted

 Call ClearAnova

 Call DeleteStoredData

 Call ClearFinalTable

Else

 Exit Sub

End If

End Sub

Macro Code for FPMAnova.xls Page 99

' **

' ClearChem() deletes entries from the [ChemData] page.

' It's called from a button on the [ControlScreen] page.

' **

Sub ClearChem()

 Call SetRanges

 ChemIDTable.ClearContents

 ChemTable.ClearContents

 ChemHeader.ClearContents

 ChemUnits.ClearContents

End Sub

' **

' ClearBio() deletes entries from the [BioData] page.

' It's called from a button on the [ControlScreen] page.

' **

Sub ClearBio()

 Call SetRanges

 BioIDTable.ClearContents

 BioTable.ClearContents

 BioHeader.ClearContents

End Sub

' **

' ClearSorted() deletes entries from the [SortedData] page.

' It's called from a button on the [ControlScreen] page.

' **

Sub ClearSorted()

 Call SetRanges

 FullSortedTable.ClearContents

End Sub

' **

' ClearAnova() deletes entries from the [AnovaResults] page.

' It's called from a button on the [ControlScreen] page.

' **

Sub ClearAnova()

 Call SetRanges

 AnovaName.ClearContents

 AnovaResults.ClearContents

 AnovaResultsHeader.ClearContents

 SumResultsTable.ClearContents

 SumResultsHeader.ClearContents

 RetainBio = "#N/A"

 RetainChem = "#N/A"

End Sub

Macro Code for FPMAnova.xls Page 100

' **

' ClearFinalTable() deletes entries from the [FinalDataSet] page.

' It's called from the ClearAllTables macro.

' **

Sub ClearFinalTable()

 Call SetRanges

 FinalIDTable.ClearContents

 FinalDataTable.ClearContents

 FinalBioName.ClearContents

 FinalHitNoHit.ClearContents

End Sub

' **

' Auto_Close() restores original toolbars, menus, etc.

' Works automatically on closing.

' **

Sub Auto_Close()

 Call SetRanges

 On Error Resume Next

 Application.ScreenUpdating = False

 Sheets("ControlScreen").Select

 For i = 1 To Application.CountA(ToolBarStorage)

 Toolbars(ToolBarStorage(i).Value).Visible = True

 Next i

 Application.DisplayFormulaBar = True

 Application.DisplayCommentIndicator = True

End Sub

This is the end of FPMAnova.xls mod04Format Pages.

This is the end of macro code for the FPMAnova.xls Worksheet.

Macro Code for FPMCalc.xls Page 101

3.5 Macro Code for FPMCalc.xls

3.5.1 Summary

FPMAnova.xls contains 32 Microsoft Excel® Visual Basic macros that perform specific functions for the
spreadsheet. The macros are stored in ten modules. The code from each module along with some explanatory
text is listed in Sections 3.5.2 to 3.5.11. A password is required to access the modules in the spreadsheet.

3.5.1.1 Macros Activated When Spreadsheet Opens or Closes

MacroName()
Module Containing Macro

Macro Action

Auto_Open()
mod10FormatData

When you open the spreadsheet this macro (1) calls the macro SetRanges() in
mod01RunProgram to initialize all of the variables, (2) calls the macro SetUpScreen() in
mod10FormatPages to close unneeded toolbars, and (3) resets all worksheets to the
standard top-left orientation.

Auto_Close()
mod10FormatData

When you close the spreadsheet this macro restores the toolbars that were closed when
the program opened and resets the formats of the worksheets.

3.5.1.2 Macros Activated from Buttons on Worksheets

MacroName()
Module Containing Macro

Button that Activates Macro

[Worksheet with Button]

Macro Action

CopyChemData()
mod09CountCopyData

Copy Anova Data

[ControlScreen]

Copies data from [FinalDataSet]
page of the FPMAnova.xls
spreadsheet and pastes it into the
[DataTable] page of the
FPMCalc.xls spreadsheet.

ClearAllTables()
mod01RunProgram

Clear All Worksheets

[ControlScreen]

Deletes entries from
FullDataTable. Calls
ClearTables() and
ClearTestTable() in
mod01RunProgram to delete
entries from the remaining tables.

ClearTables()
mod01RunProgram

Clear All Worksheets Except Data & Storage Tables

[ControlScreen]

Deletes entries from the tables
that store results so that data
from a previous calculation will
not interfere. Calls
ClearTestTable() in
mod01RunProgram to delete
entries from that table.

RunProgram()
mod01RunProgram

Calculate Floating Percentiles

[ControlScreen]
See Section 3.5.1.3

ShowReliabilityDefs()
mod09CountCopyData

Definitions of Reliability Measures

[Criteria]

Displays the ReliabilityDefs form.
See Section 2.4.3.2

ShowHideCriteriaRows()
Mod10FormatData

Show / Hide Additional Calculation Details

[Criteria]

Shows or hides the extra rows of
data on the [Criteria] page.

Macro Code for FPMCalc.xls Page 102

MacroName()
Module Containing Macro

Button that Activates Macro

[Worksheet with Button]

Macro Action

ShowCriteriaDefs()
mod09CountCopyData

Description of Calculation Details

[Criteria]

Displays the CriteriaDefs form.
See Section 2.4.3.1

3.5.1.3 Macros that Control the Main Function of the Program

When you click on the “Calculate Floating Percentiles” button, which is located on the [ControlScreen]
worksheet, you start the RunProgram() macro in the mod01RunProgram module. This macro performs some
basic functions on its own and also calls other macros that each carry out part of the overall process. In the table
below the RunProgram() macro code is shown in the left column and the steps that are carried out are explained
in the right column.

RunProgram() Macro Code Function

Range("A1").Select

Call SetRanges

Stores the cursor off-screen (column A and row 1 are hidden
on every worksheet).

Calls SetRanges() in mod01RunProgram to initialize the
variables used by the program. (See Section 3.1.3.1 for
more information about SetRanges()).

VersionName = "FPMCalc.xls Version 120608"

Time = ""

DataSummary.ClearContents

Puts program version on [ControlScreen]

Clears the time from the previous run.

Clears all entries from the Data Summary Table on
[ControlScreen].

NumSteps = Int(1 + (FNFinal - FNInitial) / FNInterval) Determines the number of false negative levels to calculate
based on the requested initial, final, and interval values.

Temp = Timer Stores the current time (Timer), which will be used as the
program start time.

Call Count Calls Count() in mod09CountCopyData, which does the
following:

(1) Makes note of the spreadsheet‟s current name.

(2) Counts the following items for later use.

NumChem = No. of analytes
NumData = No. of data points
NumSamples = No. of samples
NumIndet = No. of bio results considered indeterminate
NumNoHits = No. of bio results considered no-hits
NumHits = No. of bio results considered hits

Application.ScreenUpdating = False Prevents the program from updating the screen after each
step. This allows the program to run faster.

Call ClearTables

Calls ClearTables() in mod01RunProgram, which does the
following:

Deletes entries from the tables that store results so that data
from a previous calculation will not interfere. Calls
ClearTestTable() in mod01RunProgram to delete entries
from that table.

Call InputCheck Calls InputCheck() in mod01RunProgram, which does the

Macro Code for FPMCalc.xls Page 103

RunProgram() Macro Code Function

 following:

(1) Checks to see if all of the required Yes/No answers have
been provided and if reasonable values for the range of
%False Negatives have been entered in the "Program
Settings" table on the [ControlScreen] page.

(2) If not, an error message is displayed and the program is
stopped.

Application.StatusBar = "(1/6) Creating Distributions"

Puts a message in the status bar (located in the lower left
corner of the spreadsheet screen) to inform the user that the
program is beginning the first of six steps and describes what
will be done in that step.

Call CreateDistributions

Calls CreateDistributions() in mod02CreateDistributions,
which does the following:

(1) Copies the analyte names from [DataTable] to
[Distributions].

(2) Copies data from [DataTable] and sorts it into columns by
analyte in the table on [Distributions].

(3) Sorts each column of data from low to high.

Application.StatusBar = "(2/6) Summarizing Data" Updates the note in the status bar.

Call SummarizeData

Calls SummarizeData() in mod03SummarizeData, which
does the following:

(1) Sorts the Hit/No-Hit entries on [Data Table] from low to
high, which orders them as indeterminates (-1), no-hits (0),
and hits(1).

(2) Counts the number of data points and finds the maximum
and minimum for each analyte.

(3) Uses the min and max concentrations of each analyte to
evaluate the initial increments used for the floating percentile
calculations.

(4) Estimates the number of iterations necessary to reach the
desired precision.

(5) Counts the hits and no-hits and finds the maximum hit
and no-hit concentrations.

(6) Assigns an AET to each analyte. If the option has been
selected, outliers are omitted from consideration when
assigning the AETs.

Application.StatusBar = "(3/6) Calculating Percentiles" Updates the note in the status bar.

Call CalculatePercentiles

Calls CalculatePercentiles() in mod04CalculatePercentiles,
which creates a percent distribution list for the concentrations
of each analyte based on the raw data distributions on the
[Distributions] page. Stores the results on the [Percentiles]
page.

Macro Code for FPMCalc.xls Page 104

RunProgram() Macro Code Function

Application.StatusBar = "(4/6) Calculating Error Levels" Updates the note in the status bar.

Call ErrorCalculations

Calls ErrorCalculations() in mod05ErrorCalculations, which
does the following:

(1) Compares each row of percentile concentrations to
analyte concentrations and determines if the percentile
concentrations would correctly predict a hit or a no-hit.

(2) Counts the number of true and false hits and no-hits for
each percentile.

(3) Uses the true/false hit/no-hit data to calculate a series of
reliability parameters for each percentile. See Section
2.4.3.2 for definitions of the reliability parameters.

Application.StatusBar = "(5/6) Selecting Criteria" Updates the note in the status bar.

Call SelectCriteria

Calls SelectCriteria() in mod06SelectCriteria, which does the
following:

(1) Puts analyte names on the [Criteria] page.

(2) Finds the data percentiles closest to the specified percent
false negatives and copies the concentrations from those
percentiles to the [Criteria] page where they will be used as
the initial concentrations in the FPM calculations.

Application.StatusBar = "(6/6) Calculating FloatingPercentiles" Updates the note in the status bar.

Call FloatingPercentilesPass1

Note: FloatingPercentilesPass1() includes a large
amount of explanatory text that is not included in
this table. For additional information please see
Error! Reference source not found.on page Error! Bookmark
not defined..

Calls FloatingPercentilesPass1() in mod07FloatingPercentilesPass1,
which does the following for each requested %FN:

(1) Determines the initial increment that will be used for each
analyte during the FPM calculations.

(2) Copies the initial concentrations for the analytes, which
were determined previously by SelectCriteria(), and pastes
them into the row where they will be modified until the final
concentrations are reached.

(3) Calls CountFalsePos(2), which counts the #FP for each of
the concentrations in the above step.

(4) Calls RankChem(), which sorts the analytes in order of
#FPs from highest to lowest, assigns a rank to each analyte
starting with 1 for the highest #FPs, and then puts the
analytes back in alphabetical order.

(5) Finds the analyte with the most #FPs, raises its initial
concentration by the initial increment determined in step(1),
calls CountFalsePos(2) to recounts the #FPs for each
analyte, and calls CountFalseNeg() to calculate the %FN for
the data set that now has an analyte with an increased
concentrations.

(6) If the #FPs for that analyte has been reduced to 0, or the
%FN for the data set exceeds the target value, the analyte
concentration is returned to its previous value, the increment
size is reduced, and the process in step(5) is repeated with
the smaller increment instead of the initial increment.

Macro Code for FPMCalc.xls Page 105

RunProgram() Macro Code Function

(7) This process repeats until the increment has been
reduced to some acceptably small value and either #FPs = 0
for each analyte or the concentrations of those with #FPs > 0
cannot be increased without exceeding the target %FN.

(8) The size of the “acceptably small” increment is controlled
by the value that you enter for Percent Precision on the
[ControlScreen] page. See the instructions for FPMCalc on
page 29 for more information about Percent Precision.

(9) When the calculations have been completed for a specific
%FN, the program compares the final analyte concentrations
attained from raising them one increment at a time to the real
analyte concentrations in the data set. It then assigns the
real concentration that is closest to without exceeding the
one found using increments.

If NumSteps > 1 Then Call FloatingPercentilesPass2

Note: FloatingPercentilesPass2() includes a large
amount of explanatory text that is not included in
this table. For additional information please see
Error! Reference source not found. on page Error! Bookmark
not defined..

If you are testing for more than one target %FN, the program
carries out a second series of floating percentile calculations
by calling the macro FloatingPercentilesPass2() in
mod08FloatingPercentilesPass2, which does the following:

(1) Selects the lowest result for each analyte from Pass1 and
stores it in the row of "First Pass Results."

(2) Clears all needed tables and recalculates the initial
increment for each analyte.

(3) Pastes the “First Pass Results” into the row for the first
target %FN.

(4) Repeats the process used in Pass1 for the first target
%FN – find analyte with most #FPs; raise its concentration by
one increment; recount #FPs and recalculate %FN; when
necessary, go back one increment, make the increment
smaller and try again until reaching an acceptably small
concentration.

(5) Unlike Pass1, Pass2 uses the final concentrations from
the first target %FN as the initial concentrations for the
second %FN, uses the final concentrations from the second
target %FN as the initial concentrations for the third %FN,
etc., until all of the target %FNs have been calculated.

Application.StatusBar = False Deletes the message from the status bar.

Call RecalcPerformance

Calls RecalcPerformance() in mod1RunProgram, which
calculates the reliability measures for the final FPM values
assigned by FloatingPercentilesPass2 (or by
FloatingPercentilesPass1 if only one target %False Negative
was evaluated).

Call DataFormat

Calls DataFormat() in mod10FormatPages, which centers the
text and adjusts the column widths on the [Criteria] and
[DataStorage] pages.

Time = (Timer - Temp) / 60 Calculates the program run time and saves it in minutes.

For i = 7 To 1 Step -1
 Sheets(i).Activate

Restores each worksheet to the standard top-left position

Macro Code for FPMCalc.xls Page 106

RunProgram() Macro Code Function

 ActiveWindow.ScrollColumn = 1
 ActiveWindow.ScrollRow = 1
 Range("A1").Select
Next i

Sheets("Criteria").Select Selects the page that will appear when the program ends.

Application.ScreenUpdating = True Restores screenupdating so changes made during the
running of the program will now show up on screen.

MsgBox (" Floating Percentile Calculations Completed ")

Puts message on screen to inform the user that the program
has ended.

3.5.2 mod01RunProgram

This module contains 9 macros:

RunProgram controls the overall program by calling the macros that carry out the necessary sorting, testing, and calculating

routines.

SetRanges initializes the variables by setting them equal to some of the relevant previously-declared ranges.

RankChem assigns a number to each analyte based on its rank from most (#1) to least false positives.

AETScreen tests each AET to see if it can be used in place of the regular FPM result. This is an option.

InputCheck checks to see if all of the required answers have been provided and if reasonable values have been entered in

the "Program Settings" table on the [ControlScreen] page.

ClearTables deletes everything from the tables that store results so that data from a previous calculation do not interfere.

ClearTestTable deletes all data from the test table on the [Criteria] page and resets the initial counts to 0.

ClearAllTables deletes everything from the tables that store results as well as the analytical and bio data.

RecalcPerformance recalculates all of the performance measures when the FPM calculations have been completed.

The code and comments for this module are shown below.

' File: FPMCalc.xls

' This is the third of three spreadsheets used for implementing the

' Floating Percentile Method (FPM) developed by Teresa Michelsen of

' Avocet Consulting. The FPM is used to assess sediment toxicity

' and chemical composition data to develop sediment quality guidelines.

' FPMCalc.xls:

' (1) Accepts a table of chem and bio data created in FPMAnova.xls;

' (2) Sorts data by analyte into distributions from lowest to highest concentrations;

' (3) Uses the data distributions to generate data distribution percentiles;

' (4) Selects an initial FPM dataset based on user-entered targets of %False Negatives;

' (5) Compares the selected FPM dataset to the chem and bio data and counts the number of

' false positives and false negatives; and

' (5) Modifies the dataset in order to maintain the %False Negatives while minimizing the

' %False Positives.

Macro Code for FPMCalc.xls Page 107

' This spreadsheet was developed by Michael R. Anderson,

' Oregon Department of Environmental Quality.

' Last edited: December 6, 2008

' Names shown in [Square Brackets] in the comments are names of worksheets.

Option Private Module

Option Explicit

Public AETNote As Range, AETs As Range, AnovaFileName As Range

Public ChemBioData As Range, CriteriaHeader As Range

Public CriteriaSumDataRows As Range, CriteriaTable As Range

Public DataSummary As Range, DataSumName As Range

Public DataTable As Range, DistTable As Range, DistHeader As Range

Public DTHeader As Range, DTHit As Range, DTSample As Range

Public DTStation As Range, DTSurvey As Range, DTUnits As Range

Public Efficiency As Range, ErrorPercentiles As Range

Public ErrorTable As Range, EstimatedIterations As Range

Public FalseNegTargetHeader As Range, FalseNegTargetTable As Range

Public FalseHits As Range, FalseNoHits As Range

Public FalsePredHits As Range, FalsePredNoHits As Range, FirstPass As Range

Public FNInitial As Range, FNInterval As Range, FNFinal As Range

Public FullCriteriaTable As Range, FullDataTable As Range

Public IDHeader As Range, IDTable As Range, Increment As Range

Public IterationCount As Range, MaxConc As Range, MinConc As Range

Public NominalValues As Range, NumAETChem As Range

Public NumChem As Range, NumData As Range, NumDataHits As Range

Public NumDataIndets As Range, NumDataNoHits As Range, NumDataPoints

Public NumFPMChem As Range, NumHits As Range, NumIncrements As Range

Public NumIndet As Range, NumNoHits As Range, NumOutliers As Range

Public NumSamples As Range, NumSteps As Range

Public OmitOutliers As Range, OutlierMultiple As Range

Public PercentFalseHits As Range, PercentFalseNegatives As Range

Public PercentFalseNoHits As Range, PercentFalsePositives As Range

Public PercentileHeader As Range, Percentiles As Range, PercentileTable As Range

Public PerformanceStats As Range, Precision As Range, PredHitSensitivity As Range

Public PredNoHitEfficiency As Range, Reliability As Range, ScreenAETs As Range

Public Sensitivity As Range, SortOrder As Range, SortSum As Range

Public StorageHeader As Range, TestCount As Range, TestCountStatus As Range

Public TestMass As Range, Time As Range, ToolBarStorage As Range

Public TrueHits As Range, TrueNoHits As Range, WatchCalc As Range, WorkRange As Range

Public TestIDTable As Range, TestDataTable As Range, TestTableHeader As Range

Public TestTrueHits As Range, TestTrueNoHits As Range

Public TestFalseHits As Range, TestFalseNoHits As Range

Public TestHitNoHit As Range, TestSurvey As Range, TestStation As Range

Public TestSample As Range, TestCorrect As Range

Public TestFalseNeg As Range, TestFalsePos As Range, VersionName As Range

Public i As Integer, j As Integer, k As Integer, m As Integer, n As Integer

Public Chem As Integer, CriteriaRow As Integer, Delta As Integer

Public IterationsRequested As Integer, FalseNegTarget As Integer

Public NewFalseNoHits As Integer, NumBioSets As Integer

Public PercentileRow As Integer, PredictedHitFlag As Integer

Public PredictedHits As Integer, PredictedNoHitFlag As Integer

Public SortNum As Integer

Public CommentYN As String, DestinationColumn As String, DestinationFile As String

Public SourceFile As String, ThisFileName As String

Public NewPercentFalseNegatives As Double

Public MaxHit As Double, MaxNoHit As Double, Temp As Double

Macro Code for FPMCalc.xls Page 108

' **************************************

' RunProgram() calls each main subroutine, adds notes to Status Bar to show

' progress of the calculations, and times the calculations.

' **************************************

Sub RunProgram()

Range("A1").Select

Call SetRanges

' If the program is revised change the version date below.

VersionName = "FPMCalc.xls Version 120608"

Time = ""

DataSummary.ClearContents

' Determine the number of false negative levels to calculate

' based on the requested initial, final, and interval values.

NumSteps = Int(1 + (FNFinal - FNInitial) / FNInterval)

Temp = Timer

Call Count

Application.ScreenUpdating = False

Call ClearTables

Call InputCheck

' Insert notes in the status bar so that user can follow

' the progress of the calculations then call relevant macros.

Application.StatusBar = "(1/6) Creating Distributions"

Call CreateDistributions

Application.StatusBar = "(2/6) Summarizing Data"

Call SummarizeData

Application.StatusBar = "(3/6) Calculating Percentiles"

Call CalculatePercentiles

Application.StatusBar = "(4/6) Calculating Error Levels"

Call ErrorCalculations

Application.StatusBar = "(5/6) Selecting Criteria"

Call SelectCriteria

Application.StatusBar = "(6/6) Calculating FloatingPercentiles"

Call FloatingPercentilesPass1

If NumSteps > 1 Then Call FloatingPercentilesPass2

Application.StatusBar = False

Call RecalcPerformance

Call DataFormat

Time = (Timer - Temp) / 60

' Restore each worksheet to the standard top-left position

For i = 7 To 1 Step -1

Macro Code for FPMCalc.xls Page 109

 Sheets(i).Activate

 ActiveWindow.ScrollColumn = 1

 ActiveWindow.ScrollRow = 1

 Range("A1").Select

Next i

Sheets("Criteria").Select

Application.ScreenUpdating = True

If CommentYN = "N" Then

 MsgBox (" Floating Percentile Calculations Completed ")

Else

 MsgBox _

 (" Floating Percentile Calculations Completed " & vbCrLf & _

 "" & vbCrLf & _

 "Your lowest selected false negative target of " & FNInitial & "%" & vbCrLf & _

 " was not achievable with this data set;" & vbCrLf & _

 " " & NominalValues(3) & "%" & " has been substituted instead.")

End If

End Sub

' **************************************

' SetRanges() initiates the variables by associating

' them with previously-defined ranges.

' **************************************

Sub SetRanges()

Set AETs = Range("AETs")

Set AETNote = Range("AETNote")

Set AnovaFileName = Range("AnovaFileName")

Set ChemBioData = Range("ChemBioData")

Set CriteriaHeader = Range("CriteriaHeader")

Set CriteriaTable = Range("CriteriaTable")

Set DataSummary = Range("DataSummary")

Set DataTable = Range("DataTable")

Set DistHeader = Range("DistHeader")

Set DistTable = Range("DistTable")

Set DTHeader = Range("DTHeader")

Set DTHit = Range("DTHit")

Set DTSample = Range("DTSample")

Set DTStation = Range("DTStation")

Set DTSurvey = Range("DTSurvey")

Set DTUnits = Range("DTUnits")

Set Efficiency = Range("Efficiency")

Set ErrorPercentiles = Range("ErrorPercentiles")

Set ErrorTable = Range("ErrorTable")

Set EstimatedIterations = Range("EstimatedIterations")

Set FalseNoHits = Range("FalseNoHits")

Set FalseHits = Range("FalseHits")

Set FalsePredHits = Range("FalsePredHits")

Set FalsePredNoHits = Range("FalsePredNoHits")

Set FalseNegTargetHeader = Range("FalseNegTargetHeader")

Set FalseNegTargetTable = Range("FalseNegTargetTable")

Set FirstPass = Range("FirstPass")

Set FNFinal = Range("FNFinal")

Set FNInitial = Range("FNInitial")

Set FNInterval = Range("FNInterval")

Set FullCriteriaTable = Range("FullCriteriaTable")

Set FullDataTable = Range("FullDataTable")

Macro Code for FPMCalc.xls Page 110

Set IDHeader = Range("IDHeader")

Set IDTable = Range("IDTable")

Set Increment = Range("Increment")

Set IterationCount = Range("IterationCount")

Set MaxConc = Range("MaxConc")

Set MinConc = Range("MinConc")

Set NumAETChem = Range("NumAETChem")

Set NumChem = Range("NumChem")

Set NumData = Range("NumData")

Set NumDataHits = Range("NumDataHits")

Set NumDataIndets = Range("NumDataIndets")

Set NumDataNoHits = Range("NumDataNoHits")

Set NumDataPoints = Range("NumDataPoints")

Set NumHits = Range("NumHits")

Set NumFPMChem = Range("NumFPMChem")

Set NumIncrements = Range("NumIncrements")

Set NumIndet = Range("NumIndet")

Set NumNoHits = Range("NumNoHits")

Set NumOutliers = Range("NumOutliers")

Set NumSamples = Range("NumSamples")

Set NumSteps = Range("NumSteps")

Set NominalValues = Range("NominalValues")

Set OmitOutliers = Range("OmitOutliers")

Set OutlierMultiple = Range("OutlierMultiple")

Set PercentFalseNegatives = Range("PercentFalseNegatives")

Set PercentFalsePositives = Range("PercentFalsePositives")

Set PercentileHeader = Range("PercentileHeader")

Set PercentileTable = Range("PercentileTable")

Set Percentiles = Range("Percentiles")

Set PerformanceStats = Range("PerformanceStats")

Set Precision = Range("Precision")

Set PredHitSensitivity = Range("PredHitSensitivity")

Set PredNoHitEfficiency = Range("PredNoHitEfficiency")

Set Reliability = Range("Reliability")

Set ScreenAETs = Range("ScreenAETs")

Set Sensitivity = Range("Sensitivity")

Set SortOrder = Range("SortOrder")

Set SortSum = Range("SortSum")

Set StorageHeader = Range("StorageHeader")

Set TestCountStatus = Range("TestCountStatus")

Set TestMass = Range("TestMass")

Set TestDataTable = Range("TestDataTable")

Set TestIDTable = Range("TestIDTable")

Set TestTableHeader = Range("TestTableHeader")

Set TestTrueHits = Range("TestTrueHits"): Set TestTrueNoHits = Range("TestTrueNoHits")

Set TestFalseHits = Range("TestFalseHits"): Set TestFalseNoHits = Range("TestFalseNoHits")

Set TestCount = Range("TestCount")

Set TestHitNoHit = Range("TestHitNoHit"): Set TestSurvey = Range("TestSurvey")

Set TestSample = Range("TestSample"): Set TestStation = Range("TestStation")

Set TestCorrect = Range("TestCorrect"): Set TestFalseNeg = Range("TestFalseNeg")

Set TestFalsePos = Range("TestFalsePos")

Set Time = Range("Time")

Set ToolBarStorage = Range("ToolBarStorage")

Set TrueHits = Range("TrueHits")

Set TrueNoHits = Range("TrueNoHits")

Set VersionName = Range("VersionName")

Set WatchCalc = Range("WatchCalc")

End Sub

Macro Code for FPMCalc.xls Page 111

' **************************************

' RankChem() assigns a number to each analyte based on its rank

' from most (#1) to least false positives. It ignores any analyte

' that already has been assigned a final concentration (i.e., any analyte

' that has been given one of the three symbols (+, -, or AET) during

' the calculations by the ScreenAETs or FloatingPercentiles subroutines.

' **************************************

Sub RankChem()

Dim Countout As Integer

' Sort the columns first by those that contain one of the three symbols

' shown above (the FP count has already been completed or is being skipped in

' these columns), determine how many of these columns there are, and sort

' the remaining columns (the ones for which the FP count will continue) by the

' current number of false positives (high to low), followed by the number of

' iterations that have already taken place (low to high), and finally by the

' current calculated screening value (low to high).

 FullCriteriaTable.Sort _

 Key1:=FullCriteriaTable(CriteriaRow + 5, 1), Order1:=xlDescending, _

 Header:=xlNo, OrderCustom:=1, _

 Orientation:=xlLeftToRight

' Count the number of cells that have data in them. These analytes have already

' been evaluated and are marked as "+", "-", or "AET"). The sort routine below only

' needs to sort the analytes that are still being evaluated, therefore the column

' where the next iteration starts is located at Countout + 1.

 Countout = Application.CountA(Range(FullCriteriaTable(CriteriaRow + 5, 1),

FullCriteriaTable(CriteriaRow + 5, NumChem)))

 Range(FullCriteriaTable(1, Countout + 1), FullCriteriaTable(65, NumChem)).Sort _

 Key1:=FullCriteriaTable(CriteriaRow + 4, 1), Order1:=xlDescending, _

 Key2:=IterationCount, Order2:=xlAscending, _

 Key3:=FullCriteriaTable(CriteriaRow + 3, 1), Order3:=xlAscending, _

 Header:=xlNo, OrderCustom:=1, _

 Orientation:=xlLeftToRight

 SortNum = 1

 For n = 1 To NumChem

 If FullCriteriaTable(CriteriaRow + 5, n) = "" Then

 SortOrder(n) = SortNum

 SortNum = SortNum + 1

 End If

 Next n

' Put the columns back into alphabetical order to be

' consistent with the column order for the other worksheets

 FullCriteriaTable.Sort _

 Key1:=FullCriteriaTable(1, 1), Order1:=xlAscending, _

 Header:=xlNo, OrderCustom:=1, _

 Orientation:=xlLeftToRight

End Sub

Macro Code for FPMCalc.xls Page 112

' **************************************

' AETScreen() is an option that you can select by answering "Y"

' to the "Pre-Screen AETs (Y or N)?" question on the [ControlScreen]

' page. If selected, this macro tests each AET to see if it can be

' used in place of the regular FPM result.

' **************************************

Sub AETScreen()

For i = 1 To NumChem

' Place the AET concentration into the cell that stores the FPM result

' (CriteriaRow + 2, i). Then count the false negatives from all stations.

' If %FN does not increase, add a note to indicate that the AET has been

' used. If %FN increases, restore the initial concentration and retain

' for full FPM calculation.

 CriteriaTable(CriteriaRow + 2, i) = AETs(i)

 Call CountFalseNeg

 If NewPercentFalseNegatives = FalseNegTargetTable(CriteriaRow, 1) Then

 CriteriaTable(CriteriaRow + 3, i) = 0

 CriteriaTable(CriteriaRow + 4, i) = "AET"

 Else

 CriteriaTable(CriteriaRow + 2, i) = CriteriaTable(CriteriaRow, i)

 End If

Next i

End Sub

' **************************************

' InputCheck() checks to see if all of the required Yes/No answers

' have been provided and if reasonable values for the range of

' %False Negatives have been entered in the "Program Settings"

' table on the [ControlScreen] page.

' **************************************

Sub InputCheck()

ScreenAETs = UCase(ScreenAETs)

If (ScreenAETs <> "Y" And ScreenAETs <> "N") Then

 MsgBox ("'Pre-Screen AETs?' must be either Y or N")

 ScreenAETs.Select

 Application.StatusBar = False

 End

End If

OmitOutliers = UCase(OmitOutliers)

If (OmitOutliers <> "Y" And OmitOutliers <> "N") Then

 MsgBox ("'Omit Outliers?' must be either Y or N")

 OmitOutliers.Select

 Application.StatusBar = False

 End

End If

WatchCalc = UCase(WatchCalc)

If (WatchCalc <> "Y" And WatchCalc <> "N") Then

 MsgBox ("'Watch Calculations?' must be either Y or N")

 WatchCalc.Select

Macro Code for FPMCalc.xls Page 113

 Application.StatusBar = False

 End

End If

If FNFinal < FNInitial Then

 MsgBox ("Final False Neg Target must be greater than or equal to Initial value.")

 FNFinal.Select

 Application.StatusBar = False

 End

End If

If NumSteps > 10 Then

 Sheets("ControlScreen").Select

 MsgBox (_

 " You cannot request more than 10 steps." & Chr(13) & _

 " Modify the entries in the 'Criteria Table Settings' box." & Chr(13)

& _

 "" & Chr(13) & _

 "No. Steps = 1 + (Final False Neg Target - Initial False Neg Target)/Target Interval")

 Application.StatusBar = False

 End

End If

End Sub

' **************************************

' ClearTables() deletes everything from the tables that store results

' so that data from a previous calculation do not interfere.

' **************************************

Sub ClearTables()

Call SetRanges

DistHeader.ClearContents

DistTable.ClearContents

ErrorTable.ClearContents

FalseNegTargetTable.ClearContents

FirstPass.ClearContents

FullCriteriaTable.ClearContents

NominalValues.ClearContents

PercentileHeader.ClearContents

PercentileTable.ClearContents

End Sub

' **************************************

' ClearTestTable() deletes all data from the test table

' on the [Criteria] page and resets the initial counts to 0.

' **************************************

Sub ClearTestTable()

Call SetRanges

Application.ScreenUpdating = False

TestIDTable.ClearContents

TestDataTable.ClearContents

Macro Code for FPMCalc.xls Page 114

TestTableHeader.ClearContents

TestCount.ClearContents

TestMass.ClearContents

PerformanceStats.ClearContents

TestTrueHits = 0: TestTrueNoHits = 0

TestFalseHits = 0: TestFalseNoHits = 0

Application.ScreenUpdating = True

End Sub

' **************************************

' ClearAllTables() deletes everything from the tables that

' store results as well as the analytical and bio data.

' **************************************

Sub ClearAllTables()

Dim Response As String

Response = MsgBox("Are you sure you want to clear ALL tables, including the Table of

Biological and Analytical Data?", vbYesNoCancel)

If Response <> vbYes Then End

Call ClearTables

Call ClearTestTable

DataTable.ClearContents

DTHeader.ClearContents

DTUnits.ClearContents

IDTable.ClearContents

End Sub

' **************************************

' RecalcPerformance() recalculates all of the performance

' measures when the FPM calculations have been completed.

' **************************************

Sub RecalcPerformance()

If NumSteps > 1 Then

For CriteriaRow = 1 To (5 * NumSteps - 4) Step 5

 TestMass.ClearContents

 Range(CriteriaTable(CriteriaRow, 1), CriteriaTable(CriteriaRow, NumChem)).Copy

 Range(TestMass(1), TestMass(NumChem)).PasteSpecial Paste:=xlPasteValues

 Call CountTrueFalse

 For i = 1 To 7

 PerformanceStats(i).Copy

 FalseNegTargetTable(CriteriaRow, i).PasteSpecial Paste:=xlPasteValues

 Next i

Next CriteriaRow

End If

For CriteriaRow = 1 To (5 * NumSteps - 4) Step 5

 TestMass.ClearContents

 Range(CriteriaTable(CriteriaRow + 2, 1), CriteriaTable(CriteriaRow + 2, NumChem)).Copy

Macro Code for FPMCalc.xls Page 115

 Range(TestMass(1), TestMass(NumChem)).PasteSpecial Paste:=xlPasteValues

 Call CountTrueFalse

 For i = 1 To 7

 PerformanceStats(i).Copy

 FalseNegTargetTable(CriteriaRow + 2, i).PasteSpecial Paste:=xlPasteValues

 Next i

Next CriteriaRow

Call ClearTestTable

End Sub

This is the end of FPMCalc.xls mod01RunProgram.

Macro Code for FPMCalc.xls Page 116

3.5.3 mod02CreateDistributions

This module contains only 1 macro, CreateDistributions. The code and comments are shown below.

Option Private Module

Option Explicit

' **************************************

' CreateDistributions() sorts the data from the [DataTable] page

' and lists it in columns from lowest concentration to highest

' concentration on the [Distributions] page.

' **************************************

Sub CreateDistributions()

Sheets("Distributions").Select

' Enter chemical names from DataTable into the

' header rows of the DistributionTable.

For i = 1 To NumChem

 DistHeader(i) = DTHeader(i)

Next i

' Copy data from DataTable to DistributionTable

For j = 1 To NumChem

 For i = 1 To NumSamples

 DistTable(i, j) = DataTable(i, j)

 Next i

Next j

' Sort data in each column of DistributionTable from low to high

For i = 1 To NumChem

 Range(DistTable(1, i), DistTable(NumSamples, i)).Select

 Selection.Sort _

 Key1:=DistTable(1, i), Order1:=xlAscending, _

 Header:=xlNo, Orientation:=xlTopToBottom

Next i

DistHeader.Select

Call CenterText

Range("A1").Select

End Sub

This is the end of FPMCalc.xls mod02CreateDistributions.

Macro Code for FPMCalc.xls Page 117

3.5.4 mod03SummarizeData

This module contains only 1 macro, SummarizeData. The code and comments are shown below.

Option Private Module

Option Explicit

' **************************************

' SummarizeData() summarizes key parameters for each chemical and

' stores them on the [Criteria] page. It also assigns an AET to

' each chemical and provides an option to screen out outliers

' when assigning the AET.

' **************************************

Sub SummarizeData()

' Sort the Hit/No-Hit entries in the Data Table from low to high,

' which orders them as indeterminates (-1), no-hits (0), and hits(1).

Sheets("DataTable").Select

ChemBioData.Select

Selection.Sort Key1:=ChemBioData(1, 1), Order1:=xlAscending, _

 Header:=xlNo, OrderCustom:=1, Orientation:=xlTopToBottom

' Count number of data points, find the maximum, minimum, etc. for each analyte.

For i = 1 To NumChem

 Range(DataTable(1, i), DataTable(NumSamples, i)).Select

 Set WorkRange = Selection

 NumDataPoints(i) = Application.CountA(WorkRange)

 MinConc(i) = Application.Min(WorkRange)

 MaxConc(i) = Application.Max(WorkRange)

' Select the Hits, count them, and find the max.

 Range(DataTable(NumIndet + NumNoHits + 1, i), DataTable(NumSamples, i)).Select

 Set WorkRange = Selection

 NumDataHits(i) = Application.CountA(WorkRange)

 MaxHit = Application.Max(WorkRange)

' Select the No-Hits, count them, and find the max.

 Range(DataTable(NumIndet + 1, i), DataTable(NumIndet + NumNoHits, i)).Select

 Set WorkRange = Selection

 NumDataNoHits(i) = Application.CountA(WorkRange)

 MaxNoHit = Application.Max(WorkRange)

 NumDataIndets(i) = NumDataPoints(i) - NumDataHits(i) - NumDataNoHits(i)

' Assign an AET to the chemical

Macro Code for FPMCalc.xls Page 118

' If there are no "No Hits" then an AET cannot be identified.

' This is marked "-" and a note is placed in the AETNote row.

 If NumDataNoHits(i) = 0 Then

 AETs(i) = "-"

 AETNote(i) = "No NH"

 End If

' If OmitOutliers = "Y" then outliers will not be considered in the

' selection of an AET. The highest value is considered an outlier if it

' is greater than the next highest value by a specified number of times.

' If that is the case, then the 2nd highest is compared to the 3rd highest,

' etc. until the highest No Hit is found that passes the outlier test.

' If the AETs fail the outlier test until there is only one No Hit

' remaining, then AET = the last (smallest) No Hit. There must be 2

' or more No Hits to apply this test.

 If (OmitOutliers = "Y" And AETs(i) <> "-" And NumDataNoHits(i) > 1) Then

 For k = 1 To (NumDataNoHits(i) - 1)

 If Application.Large(WorkRange, k) <= OutlierMultiple *

Application.Large(WorkRange, k + 1) Then

 AETs(i) = Application.Large(WorkRange, k)

 Exit For

 ElseIf k = (NumDataNoHits(i) - 1) Then

 AETs(i) = Application.Large(WorkRange, k + 1)

 Exit For

 End If

 Next k

 NumOutliers(i) = k - 1

 If AETs(i) >= MaxHit Then AETNote(i) = ">"

 Else

 AETs(i) = MaxNoHit

 End If

Next i

End Sub

This is the end of FPMCalc.xls mod03SummarizeData.

Macro Code for FPMCalc.xls Page 119

3.5.5 mod04CalculatePercentiles

This module contains only 1 macro, CalculatePercentiles. The code and comments are shown below.

Option Private Module

Option Explicit

' **************************************

' CalculatePercentiles() creates a percent distribution list

' for the concentrations of each analyte based on the raw data

' distributions on the [Distributions] page. The results are

' stored on the [Percentiles] page.

' **************************************

Sub CalculatePercentiles()

Sheets("Percentiles").Select

' Copy chemical names into the header of the percentile table.

For i = 1 To NumChem

 PercentileHeader(i) = DTHeader(i)

Next i

PercentileHeader.Select

Call CenterText

Range("A1").Select

Sheets("Distributions").Select

' Calculate percentiles of the range of data for each chemical

For i = 1 To NumChem

 If OmitOutliers = "Y" Then

 Range(DistTable(1, i), DistTable(NumDataPoints(i) - NumOutliers(i), i)).Select

 Else

 Range(DistTable(1, i), DistTable(NumDataPoints(i), i)).Select

 End If

 Set WorkRange = Selection

 For j = 1 To 100

 PercentileTable(j, i) = Application.Percentile(WorkRange, j / 100)

 Next j

Next i

Sheets("Percentiles").Select

Call CenterText

End Sub

This is the end of FPMCalc.xls mod04CalculatePercentiles.

Macro Code for FPMCalc.xls Page 120

3.5.6 mod05ErrorCalculations

This module contains only 1 macro, ErrorCalculations. The code and comments are shown below.

Option Private Module

Option Explicit

' **************************************

' ErrorCalculations() compares each row of percentile concentrations to

' station chemical concentrations and determines if the percentile concentrations

' would correctly predict each hit and no-hit, and counts the number of

' true/false hits/no-hits for each row.

' **************************************

Sub ErrorCalculations()

Sheets("ErrorCalc").Select

For i = 1 To 100 'Percentile Rows

TrueHits(i) = 0: TrueNoHits(i) = 0

FalseHits(i) = 0: FalseNoHits(i) = 0

 For j = 1 To NumSamples

 PredictedHitFlag = 0

 For k = 1 To NumChem

 If DataTable(j, k) <> "" Then

 If DataTable(j, k) > PercentileTable(i, k) Then

 PredictedHitFlag = 1

 Exit For

 End If

 End If

 Next k

 If (PredictedHitFlag = 1 And DTHit(j) = 1) Then

 TrueHits(i) = TrueHits(i) + 1

 ElseIf (PredictedHitFlag = 0 And DTHit(j) = 0) Then

 TrueNoHits(i) = TrueNoHits(i) + 1

 ElseIf (PredictedHitFlag = 1 And DTHit(j) = 0) Then

 FalseHits(i) = FalseHits(i) + 1

 ElseIf (PredictedHitFlag = 0 And DTHit(j) = 1) Then

 FalseNoHits(i) = FalseNoHits(i) + 1

 End If

 Next j

Next i

For i = 1 To 100

' Calculate DOE evaluation parameters

PercentFalseNegatives(i) = 100 * FalseNoHits(i) / (TrueHits(i) + FalseNoHits(i))

PercentFalsePositives(i) = 100 * FalseHits(i) / (TrueNoHits(i) + FalseHits(i))

Sensitivity(i) = 100 * TrueHits(i) / (TrueHits(i) + FalseNoHits(i))

Efficiency(i) = 100 * TrueNoHits(i) / (TrueNoHits(i) + FalseHits(i))

Reliability(i) = 100 * (TrueHits(i) + TrueNoHits(i)) / (TrueHits(i) + TrueNoHits(i) +

FalseHits(i) + FalseNoHits(i))

Macro Code for FPMCalc.xls Page 121

' Calculate DEQ evaluation parameters

If (TrueHits(i) = 0 And FalseHits(i) = 0) Then

 FalsePredHits(i) = "NA"

 PredHitSensitivity(i) = "NA"

Else

 FalsePredHits(i) = 100 * FalseHits(i) / (TrueHits(i) + FalseHits(i))

 PredHitSensitivity(i) = 100 * TrueHits(i) / (TrueHits(i) + FalseHits(i))

End If

If (TrueNoHits(i) = 0 And FalseNoHits(i) = 0) Then

 FalsePredNoHits(i) = "NA"

 PredNoHitEfficiency(i) = "NA"

Else

 FalsePredNoHits(i) = 100 * FalseNoHits(i) / (TrueNoHits(i) + FalseNoHits(i))

 PredNoHitEfficiency(i) = 100 * TrueNoHits(i) / (TrueNoHits(i) + FalseNoHits(i))

End If

Next i

End Sub

This is the end of FPMCalc.xls mod05ErrorCalculations.

Macro Code for FPMCalc.xls Page 122

3.5.7 mod06SelectCriteria

This module contains only 1 macro, Select Criteria. The code and comments are shown below.

Option Private Module

Option Explicit

' **************************************

' SelectCriteria() finds the data percentiles closest to the specified percent

' false negatives and copies those sets of percentiles to the [Criteria] page.

' **************************************

Sub SelectCriteria()

Dim Start As Integer, Response As String

Dim ErrorHeader

Set ErrorHeader = Range("ErrorHeader")

' This enters the data table row names on the "Criteria" worksheet

Sheets("Criteria").Select

' Print names in the header row on the Criteria page

For i = 1 To NumChem: CriteriaHeader(i) = PercentileHeader(i): Next i

CriteriaRow = 1

CommentYN = "N"

For FalseNegTarget = FNInitial To FNFinal Step FNInterval

 NominalValues(CriteriaRow + 2) = FalseNegTarget

 For PercentileRow = 1 To 100

 If PercentFalseNegatives(PercentileRow) > FalseNegTarget Then

' If the the lowest false negative percentage of the data set (located in

' PercentileRow = 1) is greater than the Initial False Negative Target, the

' target percentage is reset to the next integral value above the lowest value

' and the calculation then proceeds. The remaining False Negative Targets are

' not changed.

 If PercentileRow = 1 Then

 NominalValues(CriteriaRow + 2) = Int(PercentFalseNegatives(1)) + 1

 Start = 0

 CommentYN = "Y"

 Else

 Start = 1

 End If

 Exit For

 End If

 Next PercentileRow

 For i = 1 To 6

 FalseNegTargetTable(CriteriaRow, i) = ErrorTable(PercentileRow - Start, i + 4)

 Next i

Macro Code for FPMCalc.xls Page 123

 FalseNegTargetTable(CriteriaRow, 7) = ErrorTable(PercentileRow - Start, 13)

 For i = 1 To NumChem

 CriteriaTable(CriteriaRow, i) = PercentileTable(PercentileRow - Start, i)

 Next i

 CriteriaRow = CriteriaRow + 5

Next FalseNegTarget

Range("A1").Select

End Sub

This is the end of FPMCalc.xls mod06SelectCriteria.

Macro Code for FPMCalc.xls Page 124

3.5.8 mod07FloatingPercentilePass1

This module contains only 1 macro, FloatingPercentilesPass1. The code and comments are shown below.

Option Private Module

Option Explicit

' **************************************

' FloatingPercentilesPass1() finds an initial set of FPM results starting

' with initial values taken from the [Percentiles] page.

' **************************************

Sub FloatingPercentilesPass1()

' Data stored under the chemical names on the CriteriaRow page are displayed

' in sets of 5 rows as follows:

' CriteriaRow holds the initial concentrations determined by the allowable %FN

' (CriteriaRow + 1) holds the #FP for each initial concentration in CriteriaRow

' (CriteriaRow + 2) holds the final concentrations determined by this method

' (CriteriaRow + 3) holds the #FP for the final concentrations in (CriteriaRow + 2)

' (CriteriaRow + 4) holds the code indicating which of the two limiting

' criteria controls each final concentration in (CriteriaRow + 2)

' (Note: %FN = the percentage of false negative results for a given data set, and

' #FP = the number of false positives for a given analyte in the latest round of tests.)

' The program starts the Floating Percentile calculations with the analyte that

' has the highest #FPs. Its concentration is increased by a specified increment

' and the %FN and #FPs are then reevaluated. When it is determined that either

' the %FN > the desired %FN or the #FPs = 0, the size of the increment for that

' specific analyte is reduced and the entire process is started again. Each time

' the increment is reduced it is considered another "interation" for that analyte.

' So, each analyte starts out on iteration #1 with the initial increment and the

' number of interations is increased every time that the increment is reduced.

' After each test the program recounts the #FPs and continues to use the analyte

' with the most #FPs. If two or more analytes are tied for the highest #FPs, the

' program uses the analyte with the fewest number of iterations. If two or more

' analytes are tied for fewest nubmer of iterations, the program uses the analyte

' that currently has the lowest assigned screening level.

' Use the minimum and maximum concentrations of each analyte to evaluate the

' initial increments for calculating the number of false positive values. Then

' estimate the number of iterations necessary to reach the desired percent precision.

For i = 1 To NumChem

 Increment(i) = (MaxConc(i) - MinConc(i)) / NumIncrements

 If Increment(i) > 0 Then

 EstimatedIterations(i) = Int(Application.Log10(100 * (MaxConc(i) - MinConc(i)) /

(Precision * MinConc(i))) / Application.Log10(NumIncrements))

 Else

 EstimatedIterations(i) = "NA"

 End If

Next i

Macro Code for FPMCalc.xls Page 125

For CriteriaRow = 1 To (5 * NumSteps - 4) Step 5

' This copies the initial concentration of each analyte (for the specified %FN)

' into the "final concentration" row prior to starting the calculations. All changes

' in that concentration will be made in that row until the final concentration is

' reached, which is based either on #FPs = 0 or %FN will increase if the concentration

' is increased any higher. This also sets the initial iteration counts to 0.

For i = 1 To NumChem

 CriteriaTable(CriteriaRow + 2, i) = CriteriaTable(CriteriaRow, i)

 IterationCount(i) = 1

Next i

' Before starting the Floating Percentile calculations, you have the option of

' screening out analytes which have AET concentrations that do not increase the %FN

' above the acceptable level. If you use this option, analytes that behave this way

' are designated "AET" in the symbols row and these analytes are not included in the

' subsequent Floating Percentile calculations. This can significantly speed up the

' calculations since there are cases where a large number of analytes have AET values

' that fit this criterion. Note, however, that the results will not necessarily be

' idwentical to those in which all analytes go through the full Floating Percentile

' calculations

If ScreenAETs = "Y" Then Call AETScreen

Do

' Set the sorting counter to zero and clear all entries from the row

' that designates the order in which the analytes should be sorted.

SortSum = 0

For Chem = 1 To NumChem: SortOrder(Chem) = "": Next Chem

' Count #FPs for each chemical, then sort the data in decreasing

' order of #FPs, assign a number to each chemical (#1= most #FPs),

' and write this number in the SortOrder row.

Call CountFalsePos(2)

Call RankChem

' Select the chemical with the highest #FPs, which

' is the one that was assigned "1" in the previous sort.

' Use that chemical for the subsequent tests within this loop.

For Chem = 1 To NumChem

 If SortOrder(Chem) = 1 Then Exit For

Next Chem

' Count the number of chemicals that are still being evaluated

' (i.e., those with numbers in the 'SortOrder' data row).

SortSum = Application.WorksheetFunction.Count(SortOrder)

Application.StatusBar = "(6/6) Calculating FloatingPercentiles (1st Pass): " &

NominalValues(CriteriaRow + 2) & "% False Negatives - " & SortSum & " Chemicals Left to

Evaluate"

If SortSum = 0 Then Exit Do

Macro Code for FPMCalc.xls Page 126

' Raise the value of the selected chemical (i.e., increase CurrentDataIndex(Chem))

' and see if it meets one of the limiting criteria listed below, which then causes an exit.

' If the #FP = 0

' If the %FN > the designated level

CriteriaTable(CriteriaRow + 2, Chem) = CriteriaTable(CriteriaRow + 2, Chem) + Increment(Chem)

' Recount the number of false positives for each chemical at each station and

' count total false negatives for each data set (i.e., total from all stations).

Call CountFalsePos(2)

Call CountFalseNeg

' This sets the number of iterations to use for each calculation

' based on number calculated from the desired percent percision.

IterationsRequested = EstimatedIterations(Chem)

' If percent false negatives (%FN) exceeds specified value, go back one increment,

' set the increment to a smaller value and try again. Assign the symbol "-" to the

chemical

' after the specified number of iterations has been reached.

If NewPercentFalseNegatives > NominalValues(CriteriaRow + 2) Then

 CriteriaTable(CriteriaRow + 2, Chem) = CriteriaTable(CriteriaRow + 2, Chem) - Increment(Chem)

 If IterationCount(Chem) + 1 > IterationsRequested Then

 CriteriaTable(CriteriaRow + 4, Chem) = "-"

 Else

 IterationCount(Chem) = IterationCount(Chem) + 1

 Increment(Chem) = Increment(Chem) / NumIncrements

 End If

' If number of false positives (#FPs) has been reduced to zero, go back one increment,

' set the increment to a smaller value and try again. Assign the symbol "+" to the chemical

' and exit the loop after the specified number of iterations.

ElseIf CriteriaTable(CriteriaRow + 3, Chem) = 0 Then

 If IterationCount(Chem) + 1 > IterationsRequested Then

 CriteriaTable(CriteriaRow + 4, Chem) = "+"

 Else

 CriteriaTable(CriteriaRow + 2, Chem) = CriteriaTable(CriteriaRow + 2, Chem) - Increment(Chem)

 Increment(Chem) = Increment(Chem) / NumIncrements

 IterationCount(Chem) = IterationCount(Chem) + 1

 End If

' If the %FN is still acceptable and the #FPs has not been reduced to zero but the

' tested concentration exceeds the maximum concentration (very unlikely unless a large

' number of iterations or a very small precision is requested), set the increment to a

' smaller value and try again. Assign the symbol "max" to the chemical and exit the

' loop after the specified number of iterations.

ElseIf CriteriaTable(CriteriaRow + 2, Chem) > MaxConc(Chem) Then

 If IterationCount(Chem) + 1 > IterationsRequested Then

 CriteriaTable(CriteriaRow + 4, Chem) = "max"

 Else

 CriteriaTable(CriteriaRow + 2, Chem) = CriteriaTable(CriteriaRow + 2, Chem) - Increment(Chem)

 Increment(Chem) = Increment(Chem) / NumIncrements

 IterationCount(Chem) = IterationCount(Chem) + 1

 End If

End If

Macro Code for FPMCalc.xls Page 127

If WatchCalc = "Y" Then

 Application.ScreenUpdating = True

 Application.ScreenUpdating = False

End If

Loop

' This determines which real data points are closest to but do not

' exceed the values assigned by the Floating Percentile calculations.

' The real data points are used for the final results.

For i = 1 To NumChem

 For j = 1 To NumDataPoints(i)

 If DistTable(j, i) > CriteriaTable(CriteriaRow + 2, i) Then

 CriteriaTable(CriteriaRow + 2, i) = DistTable(j - 1, i)

 Exit For

 ElseIf j = NumDataPoints(i) Then

 CriteriaTable(CriteriaRow + 2, i) = DistTable(j, i)

 Exit For

 End If

 Next j

Next i

' Reset all increments and iteration counts before

' starting to evaluate the next row.

For i = 1 To NumChem

 Increment(i) = (MaxConc(i) - MinConc(i)) / NumIncrements

Next i

Next CriteriaRow

If NumSteps = 1 Then Call CountAETs

End Sub

This is the end of FPMCalc.xls mod07FloatingPercentilePass1.

Macro Code for FPMCalc.xls Page 128

3.5.9 mod08FloatingPercentilePass2

This module contains only 1 macro, FloatingPercentilesPass2. The code and comments are shown below.

Option Private Module

Option Explicit

' **************************************

' FloatingPercentilesPass2() refines the FPM results by starting with the

' lowest initial FPM results and running them through the process a second time.

' **************************************

Sub FloatingPercentilesPass2()

' This spreadsheet can calculate results either for a single specified percent false negatives

' (%FNs) or for multiple numbers of %FNs up to a total of 10. (See "Criteria Table Settings"

' on the [ControlScreen] page.) When two or more results are requested the program uses this

' optimization step, which works as described in this example. Let's say that you want the

' spreadsheet to calculate the results for 5%, 10%, 15%, 20% & 25%. Those calculations are

' carried out in FloatingPercentilesPass1. After obtaining the results, this routine scans

' them to determine the lowest concentration for each analyte in its set of five results (5%FNs

' to 25%FNs). The lowest results are then placed into the first row of the Criteria Table

' (replacing the original set) and used as the starting point for a second calculation of the

' 5%FN results. This second set of results for 5%FNs are then used as the starting point for

' the second set of 10%FN calculations. The second set of results are used as the starting point

' for the next higher %FNs until completing the highest target, which is 25% in this example.

' Select the lowest result for each analyte and store it in row of "First Pass Results."

For i = 1 To NumChem

 FirstPass(i) = CriteriaTable(3, i)

 For j = 8 To (5 * NumSteps - 2) Step 5

 If CriteriaTable(j, i) < FirstPass(i) Then FirstPass(i) = CriteriaTable(j, i)

 Next j

Next i

' Clear the tables in preparation for the second round of calculations.

CriteriaTable.ClearContents

FalseNegTargetTable.ClearContents

For CriteriaRow = 1 To (5 * NumSteps - 4) Step 5

' If this is the first %FN target value to be recalculated, copy the First Pass Results

' into the "initial concentration" row, where they will remain unchanged, and into the

' "final concentration" row where they will be stepped up during the course of the

' calculations. If this not the first %FN target, then copy the final concentrations from

' the previous target value into the initial and final concentration rows. During the

' calculations all changes in concentrations will be made in the final concentration row

' until the actual final concentration is reached, which is based either on #FPs = 0 or

' %FN will increase if the concentration is increased any higher. This also resets the

' initial iteration counts to 1.

Macro Code for FPMCalc.xls Page 129

For i = 1 To NumChem

 If CriteriaRow = 1 Then

 CriteriaTable(1, i) = FirstPass(i)

 CriteriaTable(3, i) = FirstPass(i)

 Else

 CriteriaTable(CriteriaRow, i) = CriteriaTable(CriteriaRow - 3, i)

 CriteriaTable(CriteriaRow + 2, i) = CriteriaTable(CriteriaRow - 3, i)

 End If

 IterationCount(i) = 1

Next i

Call CountFalsePos(0)

Do

' Set all of the counters to zero

SortSum = 0

For Chem = 1 To NumChem: SortOrder(Chem) = "": Next Chem

' Count #FPs for each chemical, then sort the data in decreasing

' order of #FPs, assign a number to each chemical (#1= most #FPs),

' and write this number in the SortOrder row.

Call CountFalsePos(2)

Call RankChem

' Select the chemical with the highest #FPs, which

' is the one that was assigned "1" in the previous sort.

' Use that chemical for the subsequent tests within this loop.

For Chem = 1 To NumChem

 If SortOrder(Chem) = 1 Then Exit For

Next Chem

' Count the number of chemicals that are still being evaluated

' (i.e., those with numbers in the 'SortOrder' data row).

SortSum = Application.WorksheetFunction.Count(SortOrder)

Application.StatusBar = "(6/6) Calculating FloatingPercentiles (2nd Pass): " &

NominalValues(CriteriaRow + 2) & "% False Negatives - " & SortSum & " Chemicals Left to

Evaluate"

If SortSum = 0 Then Exit Do

' Raise the value of the selected chemical (i.e., increase CurrentDataIndex(Chem))

' and see if it meets one of the limiting criteria listed below, which then causes an exit.

' If the #FP = 0

' If the %FN > the designated level

CriteriaTable(CriteriaRow + 2, Chem) = CriteriaTable(CriteriaRow + 2, Chem) + Increment(Chem)

' Recount the number of false positives for each chemical at each station and

' count total false negatives for each data set (i.e., total from all stations).

Call CountFalsePos(2)

Call CountFalseNeg

Macro Code for FPMCalc.xls Page 130

' This sets the number of iterations to use for each calculation

' based on number calculated from the desired percent percision.

IterationsRequested = EstimatedIterations(Chem)

' If percent false negatives (%FN) exceeds specified value, go back one increment,

' set the increment to a smaller value and try again. Assign the symbol "-" to the chemical

' after the specified number of iterations has been reached.

If NewPercentFalseNegatives > NominalValues(CriteriaRow + 2) Then

 CriteriaTable(CriteriaRow + 2, Chem) = CriteriaTable(CriteriaRow + 2, Chem) -

Increment(Chem)

 If IterationCount(Chem) + 1 > IterationsRequested Then

 CriteriaTable(CriteriaRow + 4, Chem) = "-"

 Else

 IterationCount(Chem) = IterationCount(Chem) + 1

 Increment(Chem) = Increment(Chem) / NumIncrements

 End If

' If number of false positives (#FPs) has been reduced to zero, go back one increment,

' set the increment to a smaller value and try again. Assign the symbol "+" to the chemical

' and exit the loop after the specified number of iterations.

ElseIf CriteriaTable(CriteriaRow + 3, Chem) = 0 Then

 If IterationCount(Chem) + 1 > IterationsRequested Then

 CriteriaTable(CriteriaRow + 4, Chem) = "+"

 Else

 CriteriaTable(CriteriaRow + 2, Chem) = CriteriaTable(CriteriaRow + 2, Chem) - Increment(Chem)

 Increment(Chem) = Increment(Chem) / NumIncrements

 IterationCount(Chem) = IterationCount(Chem) + 1

 End If

' If the %FN is still acceptable and the #FPs has not been reduced to zero but the

' tested concentration exceeds the maximum concentration (very unlikely unless a large

' number of iterations or a very small precision is requested), set the increment to a

' smaller value and try again. Assign the symbol "max" to the chemical and exit the

' loop after the specified number of iterations.

ElseIf CriteriaTable(CriteriaRow + 2, Chem) > MaxConc(Chem) Then

 If IterationCount(Chem) + 1 > IterationsRequested Then

 CriteriaTable(CriteriaRow + 4, Chem) = "max"

 Else

 CriteriaTable(CriteriaRow + 2, Chem) = CriteriaTable(CriteriaRow + 2, Chem) - Increment(Chem)

 Increment(Chem) = Increment(Chem) / NumIncrements

 IterationCount(Chem) = IterationCount(Chem) + 1

 End If

End If

If WatchCalc = "Y" Then

 Application.ScreenUpdating = True

 Application.ScreenUpdating = False

End If

Loop

Macro Code for FPMCalc.xls Page 131

' This determines which real data point is closest to but does not

' exceed the value assigned by the Floating Percentile calculation.

' The real data point is used for the final result.

For i = 1 To NumChem

 For j = 1 To NumDataPoints(i)

 If DistTable(j, i) > CriteriaTable(CriteriaRow + 2, i) Then

 CriteriaTable(CriteriaRow + 2, i) = DistTable(j - 1, i)

 Exit For

 ElseIf j = NumDataPoints(i) Then

 CriteriaTable(CriteriaRow + 2, i) = DistTable(j, i)

 Exit For

 End If

 Next j

Next i

' Reset all increments and iteration counts before

' starting to evaluate the next row.

For i = 1 To NumChem

 Increment(i) = (MaxConc(i) - MinConc(i)) / NumIncrements

Next i

Next CriteriaRow

Call CountAETs

End Sub

This is the end of FPMCalc.xls mod08FloatingPercentilePass2.

Macro Code for FPMCalc.xls Page 132

3.5.10 mod09CountCopyData

This module contains 9 macros:

Count determines the number of different analytes, data points, etc., that will be needed in later routines.

TestRowCount sets the TestCountStatus to "True" when the CountTrueFalse macro is called directly from the "Count

Hits/NoHits in Test Row" button on the [Criteria] page.

CountTrueFalse compares analyte concentrations listed in the Test Row on the [Criteria] page to the current data set and

counts the number of true and false positives and negatives that would result if the numbers in the test row were the sediment
standards

CountFalsePos(Delta) counts the number of false positives that result from using the data in the specified row on the Criteria

Table for the screening values.

CountFalseNeg counts the number of false negatives and calculates the %FN that results from using the data in the specified

row on the Criteria Table for the screening values.

CountAETs counts the number of chemicals that are AET at all selected levels, marks the AETs for purposes of sorting, and

sorts the Criteria Table.

CopyChemData copies the data table from the FPMAnova spreadsheet and pastes it into this FPMCalc spreadsheet.

ShowReliabilityDefs displays the ReliabilityDefs form and is activated by a button on the [Criteria] page.

ShowCriteriaDefs displays the CriteriaDefs form and is activated by a button on the [Criteria] page.

The code and comments for this module are shown below.

Option Private Module

Option Explicit

' **

' Count() determines the number of different analytes, data

' points, etc., that will be needed in later routines.

' **

Sub Count()

' Update file name just in case user has saved it under new name.

ThisFileName = ActiveWorkbook.Name

' Count the number of elements in some of the data sets used in this procedure.

NumChem = Application.CountA(DTHeader)

NumData = Application.CountA(DataTable)

NumSamples = Application.CountA(DTSample)

NumIndet = Application.CountIf(DTHit, -1)

NumNoHits = Application.CountIf(DTHit, 0)

NumHits = Application.CountIf(DTHit, 1)

Macro Code for FPMCalc.xls Page 133

' Sort the raw data in order of station, survey, and sample number in

' preparation for counting the number of different stations present.

ChemBioData.Sort _

 Key1:=ChemBioData(1, 3), Order1:=xlAscending, _

 Key2:=ChemBioData(1, 2), Order2:=xlAscending, _

 Key3:=ChemBioData(1, 4), Order3:=xlAscending, _

 Header:=xlNo, _

 Orientation:=xlTopToBottom

End Sub

' **

' TestRowCount() sets the TestCountStatus to "True" when the following

' CountTrueFalse macro is called directly from the "Count Hits/NoHits in Test Row"

' button on the [Criteria] page. When the CountTrueFalse macro is called

' from within the FPM procedure the TestCountStatus remains "False".

' The CountTrueFalse macro functions differently depending on where it is used.

' **

Sub TestRowCount()

Call SetRanges

TestCountStatus = "True"

Call CountTrueFalse

End Sub

' **

' CountTrueFalse() compares analyte concentrations listed in the Test Row

' on the [Criteria] page to the current data set and counts the number of

' true and false positives and negatives that would result if the numbers

' in the test row were the sediment standards. This macro is used in two

' places:

'

' (1) It's used to evaluate any data that the user places in the test row.

' In this case it is called by the "Count Hits/NoHits in Test Row" button

' on the [Criteria] page.

'

' (2) It's also used in the counting step of the normal FPM calculation.

' In this case it is called by the FPM macros and works by automatically

' copy the data from the FPM calculation into the test row, running the macro,

' and then putting the test row answers into the appropriate row in the

' main table on the [Criteria] page.

' **

Sub CountTrueFalse()

Dim TestPctFN As Range, TestPctFP As Range, TestPctSens As Range, TestPctEff As Range

Dim TestPctPredHit As Range, TestPctPredNoHit As Range, TestPctRel As Range

Set TestPctFN = Range("TestPctFN")

Set TestPctFP = Range("TestPctFP")

Set TestPctSens = Range("TestPctSens")

Set TestPctEff = Range("TestPctEff")

Set TestPctPredHit = Range("TestPctPredHit")

Set TestPctPredNoHit = Range("TestPctPredNoHit")

Set TestPctRel = Range("TestPctRel")

TestTrueHits = 0: TestTrueNoHits = 0

TestFalseHits = 0: TestFalseNoHits = 0

Macro Code for FPMCalc.xls Page 134

For i = 1 To NumChem

 If TestMass(i) = "" Then

 TestCount(i) = "-"

 Else

 TestCount(i) = 0

 End If

Next i

' When used as described in case (1) above, TestCountStatus = "True".

' When used as described in case (2) above, TestCountStatus = "False".

If TestCountStatus = "True" Then

 Application.ScreenUpdating = False

 For i = 1 To NumChem

 If TestMass(i) = "" Then

 TestTableHeader(i) = "-"

 Else

 TestTableHeader(i) = CriteriaHeader(i)

 End If

 Next i

 For i = 1 To NumSamples

 TestCorrect(i) = 0: TestFalseNeg(i) = 0: TestFalsePos(i) = 0

 Next i

End If

For j = 1 To NumSamples

 If TestCountStatus = "True" Then

 TestHitNoHit(j) = DTHit(j): TestSurvey(j) = DTSurvey(j)

 TestStation(j) = DTStation(j): TestSample(j) = DTSample(j)

 End If

 PredictedHitFlag = 0

 For k = 1 To NumChem

 If (DataTable(j, k) <> "" And TestMass(k) <> "") Then

 If DataTable(j, k) > TestMass(k) Then

 PredictedHitFlag = 1

 Exit For

 End If

 End If

 Next k

 If (PredictedHitFlag = 1 And DTHit(j) = 1) Then

 TestTrueHits = TestTrueHits + 1

 If TestCountStatus = "True" Then TestCorrect(j) = 1

 ElseIf (PredictedHitFlag = 0 And DTHit(j) = 0) Then

 TestTrueNoHits = TestTrueNoHits + 1

 If TestCountStatus = "True" Then TestCorrect(j) = 1

 ElseIf (PredictedHitFlag = 1 And DTHit(j) = 0) Then

 TestFalseHits = TestFalseHits + 1

 ElseIf (PredictedHitFlag = 0 And DTHit(j) = 1) Then

 TestFalseNoHits = TestFalseNoHits + 1

 If TestCountStatus = "True" Then TestFalseNeg(j) = 1

 End If

Next j

Macro Code for FPMCalc.xls Page 135

' Count the number of false positives for each chemical at each station

 For j = 1 To NumSamples

 For k = 1 To NumChem

 If DTHit(j) <> 0 Then Exit For

 If (DataTable(j, k) <> "" And TestMass(k) <> "") Then

 If DataTable(j, k) > TestMass(k) Then

 TestCount(k) = TestCount(k) + 1

 TestFalsePos(j) = TestFalsePos(j) + 1

 TestDataTable(j, k) = "FP"

 End If

 End If

 Next k

 Next j

TestPctFN = 100 * TestFalseNoHits / (TestFalseNoHits + TestTrueHits)

TestPctFP = 100 * TestFalseHits / (TestFalseHits + TestTrueNoHits)

TestPctSens = 100 * TestTrueHits / (TestFalseNoHits + TestTrueHits)

TestPctEff = 100 * TestTrueNoHits / (TestFalseHits + TestTrueNoHits)

TestPctPredHit = 100 * TestTrueHits / (TestTrueHits + TestFalseHits)

TestPctPredNoHit = 100 * TestTrueNoHits / (TestTrueNoHits + TestFalseNoHits)

TestPctRel = 100 * (TestTrueHits + TestTrueNoHits) / (TestTrueHits + TestTrueNoHits +

TestFalseHits + TestFalseNoHits)

If TestCountStatus = "True" Then

 Application.ScreenUpdating = True

 TestCountStatus = "False"

End If

End Sub

' **

' CountFalsePos(Delta) counts the number of false positives that result from using the data

' in the specified row on the Criteria Table for the screening values.

' **

Sub CountFalsePos(Delta)

' When "Delta" = 0, "Criteria + Delta" is the initial concentration and

' "Criteria + Delta + 1" (i.e., CriteriaRow + 1) is the row that stores the original #FPs.

' When "Delta" = 2, "Criteria + Delta" is the current concentration being tested and

' "Criteria + Delta + 1" (i.e., CriteriaRow + 3) is the row that stores the current #FPs.

For j = 1 To NumChem: CriteriaTable(CriteriaRow + Delta + 1, j) = 0: Next j

For j = 1 To NumSamples

 For k = 1 To NumChem

 If DTHit(j) <> 0 Then Exit For 'Bio test must be "No Hit" or sample cannot be a FP.

 If DataTable(j, k) <> "" Then

 If DataTable(j, k) > CriteriaTable(CriteriaRow + Delta, k) Then

 CriteriaTable(CriteriaRow + Delta + 1, k) = CriteriaTable(CriteriaRow + Delta

+ 1, k) + 1

 End If

 End If

 Next k

Next j

End Sub

Macro Code for FPMCalc.xls Page 136

' **

' CountFalseNeg() counts the number of false negatives and calculates

' the %FN that results from using the data in the specified

' row on the Criteria Table for the screening values.

' **

Sub CountFalseNeg()

NewFalseNoHits = 0

For j = 1 To NumSamples

 For k = 1 To NumChem

 If DTHit(j) = 0 Then

 PredictedNoHitFlag = 1 'If Bio test is "No Hit" then sample cannot be a FN.

 Exit For

 Else: PredictedNoHitFlag = 0

 End If

 If DataTable(j, k) <> "" Then

 If DataTable(j, k) > CriteriaTable(CriteriaRow + 2, k) Then

 PredictedNoHitFlag = 1

 Exit For

 End If

 End If

 Next k

 If PredictedNoHitFlag = 0 Then NewFalseNoHits = NewFalseNoHits + 1

Next j

NewPercentFalseNegatives = 100 * NewFalseNoHits / NumHits

End Sub

' **

' CountAETs() counts the number of chemicals that are AET at all selected levels,

' marks the AETs for purposes of sorting, and sorts the Criteria Table.

' **

Sub CountAETs()

NumAETChem = 0

If ScreenAETs = "Y" Then

 For i = 1 To NumChem

 Range(CriteriaTable(1, i), CriteriaTable(50, i)).Select

 Set WorkRange = Selection

 If Application.CountIf(WorkRange, "AET") = NumSteps Then

 NumAETChem = NumAETChem + 1

 End If

 Next i

End If

NumFPMChem = NumChem - NumAETChem

End Sub

Macro Code for FPMCalc.xls Page 137

' **

' CopyChemData() Copies the data table from the FPMAnova

' spreadsheet and pastes it into this FPMCalc spreadsheet.

' **

Sub CopyChemData()

Range("A1").Select

Application.ScreenUpdating = False

Call SetRanges

ThisFileName = ActiveWorkbook.Name

SourceFile = AnovaFileName

DestinationFile = ThisFileName

On Error GoTo EndThis

Windows(SourceFile).Activate

Range("FullFinalDataTable").Copy

Windows(DestinationFile).Activate

Sheets("DataTable").Select

Range("FullDataTable").PasteSpecial Paste:=xlPasteValues

Application.CutCopyMode = False

For i = 1 To 100

 DTHeader(i).Select

 With Selection

 .Columns.AutoFit

 If .ColumnWidth < 10 Then .ColumnWidth = 10

 End With

Next i

Range("A1").Select

Application.ScreenUpdating = True

Exit Sub

EndThis:

MsgBox (" 'Copy Anova Data' did not work." & Chr(13) & _

 " Make sure that the source file is open" & Chr(13) & _

 "and in the same folder as this spreadsheet," & Chr(13) & _

 " or check the spelling and try again.")

End

End Sub

' **

' ShowReliabilityDefs() displays the ReliabilityDefs form

' and is activated by a button on the [Criteria] page.

' **

Sub ShowReliabilityDefs()

 Load ReliabilityDefs

 ReliabilityDefs.Show

End Sub

Macro Code for FPMCalc.xls Page 138

' **

' ShowCriteriaDefs() displays the CriteriaDefs form and is

' activated by a button on the [Criteria] page.

' **

Sub ShowCriteriaDefs()

 Load CriteriaDefs

 CriteriaDefs.Show

End Sub

This is the end of FPMCalc.xls mod09CountCopyData.

Macro Code for FPMCalc.xls Page 139

3.5.11 mod10FormatData

This module contains 6 macros:

Auto_Open sets up the appearance of the workbook upon opening.

SetUpScreen closes toolbars and sets up the worksheets in preparation for using the program. It's called from the

Auto_Open procedure.

CenterText centers selected text and adjusts columns to appropriate widths.

DataFormat formats the data on the [Criteria] and [DataStorage] pages.

ShowHideCriteriaRows either shows or hides the extra rows of data on the [Criteria] page. It's activated by the "Show

Additional Calculation Details" button on that page.

Auto_Close restores original toolbars, menus, etc. It works automatically on closing.

The code and comments for this module are shown below.

Option Private Module

Option Explicit

' **

' Auto_Open() sets up the appearance of the workbook upon opening.

' **

Sub Auto_Open()

Application.ScreenUpdating = False

Application.StatusBar = ""

Call SetRanges

Call SetUpScreen

Call Count

Sheets("ControlScreen").Activate

Application.ScreenUpdating = True

End Sub

' **

' SetUpScreen() closes toolbars and sets up the worksheets

' in preparation for using the program. It's called from

' the Auto_Open procedure.

' **

Sub SetUpScreen()

Dim Bar As Object, BarCount As Integer

' This sets each worksheet back to a standard top-left

' orientation with the cursor hidden off screen and hides

' the sheet that's used to store reference information.

Macro Code for FPMCalc.xls Page 140

 For i = 8 To 1 Step -1

 Sheets(i).Visible = True

 Sheets(i).Activate

 ActiveWindow.DisplayHeadings = False

 Application.DisplayCommentIndicator = xlCommentIndicatorOnly

 ActiveWindow.ScrollColumn = 1

 ActiveWindow.ScrollRow = 1

 Range("A1").Select

 Next i

 Sheets(8).Visible = False

' To create more space, hide the Formula Bar and the Comment Indicator

 Application.DisplayCommentIndicator = False

 Application.DisplayFormulaBar = False

' Keep track of what toolbars are open so they can be reopened

' before exiting. Names are stored on the hidden worksheet [Names].

' Then hide the open toolbars to create more space on the screen.

 ToolBarStorage.ClearContents

 BarCount = 0

 For Each Bar In Toolbars

 If Bar.Visible = True Then

 BarCount = BarCount + 1

 ToolBarStorage(BarCount) = Bar.Name

 Bar.Visible = False

 End If

 Next Bar

End Sub

' **

' CenterText() centers selected text and adjusts columns

' to appropriate widths.

' **

Sub CenterText()

With Selection

 .HorizontalAlignment = xlCenter

 .Columns.AutoFit

End With

End Sub

' **

' DataFormat() formats the data on the [Criteria] and

' [DataStorage] pages.

' **

Sub DataFormat()

Sheets("Criteria").Select

Range("CriteriaHeader").Select

Call CenterText

Macro Code for FPMCalc.xls Page 141

For i = 1 To 100

 CriteriaHeader(i).Select

 If CriteriaHeader(i) = "" Then

 Selection.ColumnWidth = 10

 Else

 If Selection.ColumnWidth < 10 Then Selection.ColumnWidth = 10

 End If

Next i

Sheets("DataStorage").Select

Range("StorageHeader").Select

Call CenterText

For i = 1 To 100

 StorageHeader(i).Select

 If StorageHeader(i) = 0 Then

 Selection.ColumnWidth = 10

 Else

 If Selection.ColumnWidth < 10 Then Selection.ColumnWidth = 10

 End If

Next i

End Sub

' **

' ShowHideCriteriaRows() either shows or hides the extra rows

' of data on the [Criteria] page. It's activated by the

' "Show Additional Calculation Details" button on that page.

' **

Sub ShowHideCriteriaRows()

Dim ShowHide As Range

Set ShowHide = Range("ShowHide")

Call SetRanges

If ShowHide = False Then

 ShowHide = True

 ActiveSheet.Shapes("Button 93").Select

 Selection.Characters.Text = "Show Additional Calculation Details"

 Range("A1").Select

 Range(CriteriaTable(1, 1), CriteriaTable(2, 1)).EntireRow.Hidden = True

 Range(CriteriaTable(4, 1), CriteriaTable(7, 1)).EntireRow.Hidden = True

 Range(CriteriaTable(9, 1), CriteriaTable(12, 1)).EntireRow.Hidden = True

 Range(CriteriaTable(14, 1), CriteriaTable(17, 1)).EntireRow.Hidden = True

 Range(CriteriaTable(19, 1), CriteriaTable(22, 1)).EntireRow.Hidden = True

 Range(CriteriaTable(24, 1), CriteriaTable(27, 1)).EntireRow.Hidden = True

 Range(CriteriaTable(29, 1), CriteriaTable(32, 1)).EntireRow.Hidden = True

 Range(CriteriaTable(34, 1), CriteriaTable(37, 1)).EntireRow.Hidden = True

 Range(CriteriaTable(39, 1), CriteriaTable(42, 1)).EntireRow.Hidden = True

 Range(CriteriaTable(44, 1), CriteriaTable(47, 1)).EntireRow.Hidden = True

 Range(CriteriaTable(49, 1), CriteriaTable(50, 1)).EntireRow.Hidden = True

ElseIf ShowHide = True Then

 ShowHide = False

 ActiveSheet.Shapes("Button 93").Select

 Selection.Characters.Text = "Hide Additional Calculation Details"

 Range("A1").Select

 Range(CriteriaTable(1, 1), CriteriaTable(50, 1)).EntireRow.Hidden = False

End If

End Sub

Macro Code for FPMCalc.xls Page 142

' **

' Auto_Close() restores original toolbars, menus, etc.

' Works automatically on closing.

' **

Sub Auto_Close()

 Call SetRanges

 On Error Resume Next

 Application.ScreenUpdating = False

 Sheets("ControlScreen").Select

 For i = 1 To Application.CountA(ToolBarStorage)

 Toolbars(ToolBarStorage(i).Value).Visible = True

 Next i

 Application.DisplayFormulaBar = True

 Application.DisplayCommentIndicator = True

End Sub

This is the end of FPMCalc.xls mod10FormatData.

This is the end of the macro code for the FPMCalc.xls Worksheet.

